Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fin2so Structured version   Visualization version   GIF version

Theorem fin2so 32566
Description: Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.)
Assertion
Ref Expression
fin2so ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem fin2so
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 794 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → 𝐴 ∈ FinII)
2 ssrab2 3650 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝑥
3 sstr 3576 . . . . . . . . . . . . . . . . . . 19 (({𝑤𝑥𝑤𝑅𝑣} ⊆ 𝑥𝑥𝐴) → {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴)
42, 3mpan 702 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴)
5 elpw2g 4754 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ FinII → ({𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴 ↔ {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴))
65biimpar 501 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ FinII ∧ {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴) → {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
74, 6sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ FinII𝑥𝐴) → {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
87ralrimivw 2950 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ FinII𝑥𝐴) → ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
9 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
109rabex 4740 . . . . . . . . . . . . . . . . . 18 {𝑤𝑥𝑤𝑅𝑣} ∈ V
1110rgenw 2908 . . . . . . . . . . . . . . . . 17 𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V
12 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})
13 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑦 = {𝑤𝑥𝑤𝑅𝑣} → (𝑦 ∈ 𝒫 𝐴 ↔ {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴))
1412, 13ralrnmpt 6276 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴))
1511, 14ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
168, 15sylibr 223 . . . . . . . . . . . . . . 15 ((𝐴 ∈ FinII𝑥𝐴) → ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴)
17 dfss3 3558 . . . . . . . . . . . . . . 15 (ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴 ↔ ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴)
1816, 17sylibr 223 . . . . . . . . . . . . . 14 ((𝐴 ∈ FinII𝑥𝐴) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
1918adantlr 747 . . . . . . . . . . . . 13 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
2019adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
2110, 12dmmpti 5936 . . . . . . . . . . . . . . 15 dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = 𝑥
2221neeq1i 2846 . . . . . . . . . . . . . 14 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ↔ 𝑥 ≠ ∅)
23 dm0rn0 5263 . . . . . . . . . . . . . . 15 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = ∅ ↔ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = ∅)
2423necon3bii 2834 . . . . . . . . . . . . . 14 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ↔ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
2522, 24sylbb1 226 . . . . . . . . . . . . 13 (𝑥 ≠ ∅ → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
2625adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
27 soss 4977 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝑥))
2827impcom 445 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝑥𝐴) → 𝑅 Or 𝑥)
29 porpss 6839 . . . . . . . . . . . . . . . . 17 [] Po ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑅 Or 𝑥 → [] Po ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
31 solin 4982 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣𝑅𝑦𝑣 = 𝑦𝑦𝑅𝑣))
32 fin2solem 32565 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣𝑅𝑦 → {𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦}))
33 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → (𝑤𝑅𝑣𝑤𝑅𝑦))
3433rabbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦})
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣 = 𝑦 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦}))
36 fin2solem 32565 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑣𝑥)) → (𝑦𝑅𝑣 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
3736ancom2s 840 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑦𝑅𝑣 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
3832, 35, 373orim123d 1399 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → ((𝑣𝑅𝑦𝑣 = 𝑦𝑦𝑅𝑣) → ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
3931, 38mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4039ralrimivva 2954 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Or 𝑥 → ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
41 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ↔ {𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦}))
42 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (𝑢 = {𝑤𝑥𝑤𝑅𝑦} ↔ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦}))
43 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → ({𝑤𝑥𝑤𝑅𝑦} [] 𝑢 ↔ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4441, 42, 433orbi123d 1390 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → ((𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4544ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4612, 45ralrnmpt 6276 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4711, 46ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4840, 47sylibr 223 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Or 𝑥 → ∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
4948r19.21bi 2916 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
509rabex 4740 . . . . . . . . . . . . . . . . . . . . 21 {𝑤𝑥𝑤𝑅𝑦} ∈ V
5150rgenw 2908 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 {𝑤𝑥𝑤𝑅𝑦} ∈ V
5234cbvmptv 4678 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = (𝑦𝑥 ↦ {𝑤𝑥𝑤𝑅𝑦})
53 breq2 4587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑢 [] 𝑧𝑢 [] {𝑤𝑥𝑤𝑅𝑦}))
54 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑢 = 𝑧𝑢 = {𝑤𝑥𝑤𝑅𝑦}))
55 breq1 4586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 [] 𝑢 ↔ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
5653, 54, 553orbi123d 1390 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → ((𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢)))
5752, 56ralrnmpt 6276 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦𝑥 {𝑤𝑥𝑤𝑅𝑦} ∈ V → (∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢)))
5851, 57ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
5949, 58sylibr 223 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → ∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6059r19.21bi 2916 . . . . . . . . . . . . . . . . 17 (((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) ∧ 𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → (𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6160anasss 677 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝑥 ∧ (𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∧ 𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))) → (𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6230, 61issod 4989 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑥 → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6328, 62syl 17 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝑥𝐴) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6463adantll 746 . . . . . . . . . . . . 13 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6564adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
66 fin2i2 9023 . . . . . . . . . . . 12 (((𝐴 ∈ FinII ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) ∧ (ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ∧ [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
671, 20, 26, 65, 66syl22anc 1319 . . . . . . . . . . 11 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6852, 50elrnmpti 5297 . . . . . . . . . . 11 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦})
6967, 68sylib 207 . . . . . . . . . 10 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦})
70 ssel2 3563 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝑧𝑥) → 𝑧𝐴)
71 sonr 4980 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 Or 𝐴𝑧𝐴) → ¬ 𝑧𝑅𝑧)
7270, 71sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝑥)) → ¬ 𝑧𝑅𝑧)
7372anassrs 678 . . . . . . . . . . . . . . . . . 18 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑧𝑥) → ¬ 𝑧𝑅𝑧)
7473adantlr 747 . . . . . . . . . . . . . . . . 17 ((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → ¬ 𝑧𝑅𝑧)
7574adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑧)
76 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤𝑅𝑦𝑧𝑅𝑦))
7776elrab 3331 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} ↔ (𝑧𝑥𝑧𝑅𝑦))
7877simplbi2 653 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑥 → (𝑧𝑅𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
7978ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
80 vex 3176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
8180elint2 4417 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦)
82 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = {𝑤𝑥𝑤𝑅𝑣} → (𝑧𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣}))
8312, 82ralrnmpt 6276 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦 ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣}))
8411, 83ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦 ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣})
8581, 84bitri 263 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣})
86 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑧 → (𝑤𝑅𝑣𝑤𝑅𝑧))
8786rabbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑧 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑧})
8887eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑧 → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} ↔ 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧}))
8988rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑥 → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧}))
90 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → (𝑤𝑅𝑧𝑧𝑅𝑧))
9190elrab 3331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧} ↔ (𝑧𝑥𝑧𝑅𝑧))
9291simprbi 479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧} → 𝑧𝑅𝑧)
9389, 92syl6 34 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑥 → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧𝑅𝑧))
9493adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑧𝑥) → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧𝑅𝑧))
9585, 94syl5bi 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑧𝑥) → (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) → 𝑧𝑅𝑧))
96 eleq2 2677 . . . . . . . . . . . . . . . . . . . . 21 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
9796imbi1d 330 . . . . . . . . . . . . . . . . . . . 20 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ((𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) → 𝑧𝑅𝑧) ↔ (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧)))
9895, 97syl5ibcom 234 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑥𝑧𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧)))
9998imp 444 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧))
10079, 99syld 46 . . . . . . . . . . . . . . . . 17 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧𝑅𝑧))
101100adantlll 750 . . . . . . . . . . . . . . . 16 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧𝑅𝑧))
10275, 101mtod 188 . . . . . . . . . . . . . . 15 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑦)
103102ex 449 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ¬ 𝑧𝑅𝑦))
104103ralrimdva 2952 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
105104reximdva 3000 . . . . . . . . . . . 12 ((𝑅 Or 𝐴𝑥𝐴) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
106105adantll 746 . . . . . . . . . . 11 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
107106adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
10869, 107mpd 15 . . . . . . . . 9 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
109108expl 646 . . . . . . . 8 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
110109alrimiv 1842 . . . . . . 7 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
111 df-fr 4997 . . . . . . 7 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
112110, 111sylibr 223 . . . . . 6 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 Fr 𝐴)
113 simpr 476 . . . . . 6 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 Or 𝐴)
114 df-we 4999 . . . . . 6 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
115112, 113, 114sylanbrc 695 . . . . 5 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 We 𝐴)
116 weinxp 5109 . . . . 5 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
117115, 116sylib 207 . . . 4 ((𝐴 ∈ FinII𝑅 Or 𝐴) → (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
118 sqxpexg 6861 . . . . . 6 (𝐴 ∈ FinII → (𝐴 × 𝐴) ∈ V)
119 incom 3767 . . . . . . 7 (𝑅 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝑅)
120 inex1g 4729 . . . . . . 7 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ 𝑅) ∈ V)
121119, 120syl5eqel 2692 . . . . . 6 ((𝐴 × 𝐴) ∈ V → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
122 weeq1 5026 . . . . . . 7 (𝑧 = (𝑅 ∩ (𝐴 × 𝐴)) → (𝑧 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴))
123122spcegv 3267 . . . . . 6 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴))
124118, 121, 1233syl 18 . . . . 5 (𝐴 ∈ FinII → ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴))
125124imp 444 . . . 4 ((𝐴 ∈ FinII ∧ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) → ∃𝑧 𝑧 We 𝐴)
126117, 125syldan 486 . . 3 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ∃𝑧 𝑧 We 𝐴)
127 ween 8741 . . 3 (𝐴 ∈ dom card ↔ ∃𝑧 𝑧 We 𝐴)
128126, 127sylibr 223 . 2 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ dom card)
129 fin23 9094 . . . . 5 (𝐴 ∈ FinII𝐴 ∈ FinIII)
130 fin34 9095 . . . . 5 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
131 fin45 9097 . . . . 5 (𝐴 ∈ FinIV𝐴 ∈ FinV)
132129, 130, 1313syl 18 . . . 4 (𝐴 ∈ FinII𝐴 ∈ FinV)
133 fin56 9098 . . . 4 (𝐴 ∈ FinV𝐴 ∈ FinVI)
134 fin67 9100 . . . 4 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
135132, 133, 1343syl 18 . . 3 (𝐴 ∈ FinII𝐴 ∈ FinVII)
136 fin71num 9102 . . . 4 (𝐴 ∈ dom card → (𝐴 ∈ FinVII𝐴 ∈ Fin))
137136biimpac 502 . . 3 ((𝐴 ∈ FinVII𝐴 ∈ dom card) → 𝐴 ∈ Fin)
138135, 137sylan 487 . 2 ((𝐴 ∈ FinII𝐴 ∈ dom card) → 𝐴 ∈ Fin)
139128, 138syldan 486 1 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cint 4410   class class class wbr 4583  cmpt 4643   Po wpo 4957   Or wor 4958   Fr wfr 4994   We wwe 4996   × cxp 5036  dom cdm 5038  ran crn 5039   [] crpss 6834  Fincfn 7841  cardccrd 8644  FinIIcfin2 8984  FinIVcfin4 8985  FinIIIcfin3 8986  FinVcfin5 8987  FinVIcfin6 8988  FinVIIcfin7 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-wdom 8347  df-card 8648  df-cda 8873  df-fin2 8991  df-fin4 8992  df-fin3 8993  df-fin5 8994  df-fin6 8995  df-fin7 8996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator