Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Visualization version   GIF version

Theorem ltflcei 32567
 Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Proof of Theorem ltflcei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 12463 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 762 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 renegcl 10223 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 flval 12457 . . . . . . . . 9 (-𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
65ad3antlr 763 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
7 fllep1 12464 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
87adantl 481 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1))
9 reflcl 12459 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
10 peano2re 10088 . . . . . . . . . . . . . . . . 17 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
1211adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 letr 10010 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
1412, 13mpd3an3 1417 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
158, 14mpan2d 706 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐵 ≤ ((⌊‘𝐴) + 1)))
16 leneg 10410 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1711, 16sylan2 490 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1815, 17sylibd 228 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
1918ancoms 468 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
20 ltneg 10407 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
219, 20sylan 487 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
229recnd 9947 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
23 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
24 negdi2 10218 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1))
2524oveq1d 6564 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) = ((-(⌊‘𝐴) − 1) + 1))
26 negcl 10160 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝐴) ∈ ℂ → -(⌊‘𝐴) ∈ ℂ)
27 npcan 10169 . . . . . . . . . . . . . . . . . 18 ((-(⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2826, 27sylan 487 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2925, 28eqtr2d 2645 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3022, 23, 29sylancl 693 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3130breq2d 4595 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3231adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3321, 32bitrd 267 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3433biimpd 218 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3519, 34anim12d 584 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3635ancomsd 469 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) < 𝐵𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3736impl 648 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
38 flcl 12458 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
3938peano2zd 11361 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℤ)
4039znegcld 11360 . . . . . . . . . 10 (𝐴 ∈ ℝ → -((⌊‘𝐴) + 1) ∈ ℤ)
41 rebtwnz 11663 . . . . . . . . . . 11 (-𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
423, 41syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
43 breq1 4586 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
44 oveq1 6556 . . . . . . . . . . . . 13 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1))
4544breq2d 4595 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
4643, 45anbi12d 743 . . . . . . . . . . 11 (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
4746riota2 6533 . . . . . . . . . 10 ((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4840, 42, 47syl2an 493 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4948ad2antrr 758 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
5037, 49mpbid 221 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))
516, 50eqtrd 2644 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1))
5238zcnd 11359 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
53 peano2cn 10087 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℂ)
553flcld 12461 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℤ)
5655zcnd 11359 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℂ)
57 negcon2 10213 . . . . . . . 8 ((((⌊‘𝐴) + 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5854, 56, 57syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5958ad2antrr 758 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
6051, 59mpbird 246 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵))
612, 60breqtrd 4609 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < -(⌊‘-𝐵))
6261ex 449 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (𝐵𝐴𝐴 < -(⌊‘-𝐵)))
63 ltnle 9996 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
64 ceige 12506 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵))
6564adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵))
66 ceicl 12504 . . . . . . . . 9 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℤ)
6766zred 11358 . . . . . . . 8 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℝ)
6867adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(⌊‘-𝐵) ∈ ℝ)
69 ltletr 10008 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -(⌊‘-𝐵) ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7068, 69mpd3an3 1417 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7165, 70mpan2d 706 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < -(⌊‘-𝐵)))
7263, 71sylbird 249 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7372adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7462, 73pm2.61d 169 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → 𝐴 < -(⌊‘-𝐵))
75 flval 12457 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
7675ad3antrrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
77 ceim1l 12508 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) < 𝐵)
7877adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) < 𝐵)
79 peano2rem 10227 . . . . . . . . . . . . . 14 (-(⌊‘-𝐵) ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) ∈ ℝ)
82 ltleletr 10009 . . . . . . . . . . . . 13 (((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
83823com13 1262 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-(⌊‘-𝐵) − 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8481, 83mpd3an3 1417 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8578, 84mpand 707 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8666zcnd 11359 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℂ)
87 npcan 10169 . . . . . . . . . . . . . 14 ((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8886, 23, 87sylancl 693 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8988breq2d 4595 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵)))
9089biimprd 237 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9190adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9285, 91anim12d 584 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9392ancomsd 469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9493impl 648 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
95 peano2zm 11297 . . . . . . . . . 10 (-(⌊‘-𝐵) ∈ ℤ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
9666, 95syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
97 rebtwnz 11663 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
98 breq1 4586 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴))
99 oveq1 6556 . . . . . . . . . . . 12 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) + 1))
10099breq2d 4595 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
10198, 100anbi12d 743 . . . . . . . . . 10 (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
102101riota2 6533 . . . . . . . . 9 (((-(⌊‘-𝐵) − 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10396, 97, 102syl2anr 494 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
104103ad2antrr 758 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10594, 104mpbid 221 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))
10676, 105eqtrd 2644 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1))
10777ad3antlr 763 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵)
108106, 107eqbrtrd 4605 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) < 𝐵)
109108ex 449 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵𝐴 → (⌊‘𝐴) < 𝐵))
110 flle 12462 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
111110adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
1129adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
113 lelttr 10007 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
1141133coml 1264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
115112, 114mpd3an3 1417 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
116111, 115mpand 707 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵))
11763, 116sylbird 249 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
118117adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
119109, 118pm2.61d 169 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵)
12074, 119impbida 873 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃!wreu 2898   class class class wbr 4583  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  ℂcc 9813  ℝcr 9814  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146  ℤcz 11254  ⌊cfl 12453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455 This theorem is referenced by:  leceifl  32568
 Copyright terms: Public domain W3C validator