MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Visualization version   GIF version

Theorem fgcl 21492
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))

Proof of Theorem fgcl
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 21485 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑧 ∈ (𝑋filGen𝐹) ↔ (𝑧𝑋 ∧ ∃𝑦𝐹 𝑦𝑧)))
2 elfvex 6131 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
3 fbasne0 21444 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
4 n0 3890 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑦 𝑦𝐹)
53, 4sylib 207 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦 𝑦𝐹)
6 fbelss 21447 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
76ex 449 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹𝑦𝑋))
87ancld 574 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹 → (𝑦𝐹𝑦𝑋)))
98eximdv 1833 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑦 𝑦𝐹 → ∃𝑦(𝑦𝐹𝑦𝑋)))
105, 9mpd 15 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦(𝑦𝐹𝑦𝑋))
11 df-rex 2902 . . . 4 (∃𝑦𝐹 𝑦𝑋 ↔ ∃𝑦(𝑦𝐹𝑦𝑋))
1210, 11sylibr 223 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦𝐹 𝑦𝑋)
13 elfvdm 6130 . . . 4 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
14 sseq2 3590 . . . . . 6 (𝑧 = 𝑋 → (𝑦𝑧𝑦𝑋))
1514rexbidv 3034 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1615sbcieg 3435 . . . 4 (𝑋 ∈ dom fBas → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1713, 16syl 17 . . 3 (𝐹 ∈ (fBas‘𝑋) → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1812, 17mpbird 246 . 2 (𝐹 ∈ (fBas‘𝑋) → [𝑋 / 𝑧]𝑦𝐹 𝑦𝑧)
19 0nelfb 21445 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
20 0ex 4718 . . . . 5 ∅ ∈ V
21 sseq2 3590 . . . . . 6 (𝑧 = ∅ → (𝑦𝑧𝑦 ⊆ ∅))
2221rexbidv 3034 . . . . 5 (𝑧 = ∅ → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅))
2320, 22sbcie 3437 . . . 4 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅)
24 ss0 3926 . . . . . . 7 (𝑦 ⊆ ∅ → 𝑦 = ∅)
2524eleq1d 2672 . . . . . 6 (𝑦 ⊆ ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
2625biimpac 502 . . . . 5 ((𝑦𝐹𝑦 ⊆ ∅) → ∅ ∈ 𝐹)
2726rexlimiva 3010 . . . 4 (∃𝑦𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹)
2823, 27sylbi 206 . . 3 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 → ∅ ∈ 𝐹)
2919, 28nsyl 134 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ [∅ / 𝑧]𝑦𝐹 𝑦𝑧)
30 sstr 3576 . . . . . 6 ((𝑦𝑣𝑣𝑢) → 𝑦𝑢)
3130expcom 450 . . . . 5 (𝑣𝑢 → (𝑦𝑣𝑦𝑢))
3231reximdv 2999 . . . 4 (𝑣𝑢 → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
33323ad2ant3 1077 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
34 vex 3176 . . . 4 𝑣 ∈ V
35 sseq2 3590 . . . . 5 (𝑧 = 𝑣 → (𝑦𝑧𝑦𝑣))
3635rexbidv 3034 . . . 4 (𝑧 = 𝑣 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣))
3734, 36sbcie 3437 . . 3 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣)
38 vex 3176 . . . 4 𝑢 ∈ V
39 sseq2 3590 . . . . 5 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
4039rexbidv 3034 . . . 4 (𝑧 = 𝑢 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢))
4138, 40sbcie 3437 . . 3 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢)
4233, 37, 413imtr4g 284 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧[𝑢 / 𝑧]𝑦𝐹 𝑦𝑧))
43 fbasssin 21450 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤))
44433expib 1260 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤)))
45 ss2in 3802 . . . . . . . . . . . . . 14 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
46 sstr2 3575 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑦 ⊆ (𝑢𝑣)))
4746com12 32 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑦 ⊆ (𝑧𝑤) → 𝑦 ⊆ (𝑢𝑣)))
4847reximdv 2999 . . . . . . . . . . . . . 14 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
4945, 48syl 17 . . . . . . . . . . . . 13 ((𝑧𝑢𝑤𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5049com12 32 . . . . . . . . . . . 12 (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5144, 50syl6 34 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5251exp5c 642 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → (𝑧𝐹 → (𝑤𝐹 → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))))
5352imp31 447 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑤𝐹) → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5453impancom 455 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (𝑤𝐹 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5554rexlimdv 3012 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5655ex 449 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) → (𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5756rexlimdva 3013 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑧𝐹 𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5857impd 446 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
59583ad2ant1 1075 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
60 sseq1 3589 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
6160cbvrexv 3148 . . . . 5 (∃𝑦𝐹 𝑦𝑢 ↔ ∃𝑧𝐹 𝑧𝑢)
6241, 61bitri 263 . . . 4 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑧𝐹 𝑧𝑢)
63 sseq1 3589 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
6463cbvrexv 3148 . . . . 5 (∃𝑦𝐹 𝑦𝑣 ↔ ∃𝑤𝐹 𝑤𝑣)
6537, 64bitri 263 . . . 4 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑤𝐹 𝑤𝑣)
6662, 65anbi12i 729 . . 3 (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) ↔ (∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣))
6738inex1 4727 . . . 4 (𝑢𝑣) ∈ V
68 sseq2 3590 . . . . 5 (𝑧 = (𝑢𝑣) → (𝑦𝑧𝑦 ⊆ (𝑢𝑣)))
6968rexbidv 3034 . . . 4 (𝑧 = (𝑢𝑣) → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
7067, 69sbcie 3437 . . 3 ([(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))
7159, 66, 703imtr4g 284 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) → [(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧))
721, 2, 18, 29, 42, 71isfild 21472 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  [wsbc 3402  cin 3539  wss 3540  c0 3874  dom cdm 5038  cfv 5804  (class class class)co 6549  fBascfbas 19555  filGencfg 19556  Filcfil 21459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-fg 19565  df-fil 21460
This theorem is referenced by:  fgabs  21493  trfg  21505  isufil2  21522  ssufl  21532  ufileu  21533  filufint  21534  fixufil  21536  uffixfr  21537  fmfil  21558  fmfg  21563  elfm3  21564  rnelfm  21567  fmfnfmlem2  21569  fmfnfm  21572  fbflim  21590  hausflim  21595  flimclslem  21598  flffbas  21609  fclsbas  21635  fclsfnflim  21641  flimfnfcls  21642  fclscmp  21644  haustsms  21749  tsmscls  21751  tsmsmhm  21759  tsmsadd  21760  cfilufg  21907  metust  22173  fgcfil  22877  cmetcaulem  22894  cmetss  22921  minveclem4a  23009  minveclem4  23011
  Copyright terms: Public domain W3C validator