MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Structured version   Visualization version   GIF version

Theorem flimclslem 21598
Description: Lemma for flimcls 21599. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
Assertion
Ref Expression
flimclslem ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))

Proof of Theorem flimclslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
2 topontop 20541 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
323ad2ant1 1075 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
4 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
54neisspw 20721 . . . . . . . 8 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
63, 5syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
7 toponuni 20542 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
873ad2ant1 1075 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 = 𝐽)
98pweqd 4113 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝒫 𝑋 = 𝒫 𝐽)
106, 9sseqtr4d 3605 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
11 toponmax 20543 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 elpw2g 4754 . . . . . . . . . 10 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1311, 12syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1413biimpar 501 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
15143adant3 1074 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1615snssd 4281 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ⊆ 𝒫 𝑋)
1710, 16unssd 3751 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋)
18 ssun2 3739 . . . . . 6 {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})
19113ad2ant1 1075 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋𝐽)
20 simp2 1055 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
2119, 20ssexd 4733 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V)
22 snnzg 4251 . . . . . . 7 (𝑆 ∈ V → {𝑆} ≠ ∅)
2321, 22syl 17 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ≠ ∅)
24 ssn0 3928 . . . . . 6 (({𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∧ {𝑆} ≠ ∅) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2518, 23, 24sylancr 694 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2620, 8sseqtrd 3604 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 𝐽)
27 simp3 1056 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
284neindisj 20731 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ (𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑆) ≠ ∅)
2928expr 641 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
303, 26, 27, 29syl21anc 1317 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
3130imp 444 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑆) ≠ ∅)
32 elsni 4142 . . . . . . . . . . 11 (𝑦 ∈ {𝑆} → 𝑦 = 𝑆)
3332ineq2d 3776 . . . . . . . . . 10 (𝑦 ∈ {𝑆} → (𝑥𝑦) = (𝑥𝑆))
3433neeq1d 2841 . . . . . . . . 9 (𝑦 ∈ {𝑆} → ((𝑥𝑦) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
3531, 34syl5ibrcom 236 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ {𝑆} → (𝑥𝑦) ≠ ∅))
3635ralrimiv 2948 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
3736ralrimiva 2949 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
38 simp1 1054 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘𝑋))
394clsss3 20673 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
403, 26, 39syl2anc 691 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
4140, 27sseldd 3569 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 𝐽)
4241, 8eleqtrrd 2691 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴𝑋)
4342snssd 4281 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ⊆ 𝑋)
44 snnzg 4251 . . . . . . . . . 10 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → {𝐴} ≠ ∅)
45443ad2ant3 1077 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ≠ ∅)
46 neifil 21494 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4738, 43, 45, 46syl3anc 1318 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
48 filfbas 21462 . . . . . . . 8 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4947, 48syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
50 ne0i 3880 . . . . . . . . . . 11 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ((cls‘𝐽)‘𝑆) ≠ ∅)
51503ad2ant3 1077 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
52 cls0 20694 . . . . . . . . . . 11 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
533, 52syl 17 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘∅) = ∅)
5451, 53neeqtrrd 2856 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅))
55 fveq2 6103 . . . . . . . . . 10 (𝑆 = ∅ → ((cls‘𝐽)‘𝑆) = ((cls‘𝐽)‘∅))
5655necon3i 2814 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅) → 𝑆 ≠ ∅)
5754, 56syl 17 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ≠ ∅)
58 snfbas 21480 . . . . . . . 8 ((𝑆𝑋𝑆 ≠ ∅ ∧ 𝑋𝐽) → {𝑆} ∈ (fBas‘𝑋))
5920, 57, 19, 58syl3anc 1318 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ∈ (fBas‘𝑋))
60 fbunfip 21483 . . . . . . 7 ((((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋) ∧ {𝑆} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6149, 59, 60syl2anc 691 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6237, 61mpbird 246 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
63 fsubbas 21481 . . . . . 6 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6419, 63syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6517, 25, 62, 64mpbir3and 1238 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋))
66 fgcl 21492 . . . 4 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
6765, 66syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
681, 67syl5eqel 2692 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐹 ∈ (Fil‘𝑋))
69 fvex 6113 . . . . . 6 ((nei‘𝐽)‘{𝐴}) ∈ V
70 snex 4835 . . . . . 6 {𝑆} ∈ V
7169, 70unex 6854 . . . . 5 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V
72 ssfii 8208 . . . . 5 ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7371, 72ax-mp 5 . . . 4 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
74 ssfg 21486 . . . . . 6 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7565, 74syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7675, 1syl6sseqr 3615 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ 𝐹)
7773, 76syl5ss 3579 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝐹)
78 snssg 4268 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7921, 78syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
8018, 79mpbiri 247 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
8177, 80sseldd 3569 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝐹)
8277unssad 3752 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
83 elflim 21585 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8438, 68, 83syl2anc 691 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8542, 82, 84mpbir2and 959 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ (𝐽 fLim 𝐹))
8668, 81, 853jca 1235 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372  cfv 5804  (class class class)co 6549  ficfi 8199  fBascfbas 19555  filGencfg 19556  Topctop 20517  TopOnctopon 20518  clsccl 20632  neicnei 20711  Filcfil 21459   fLim cflim 21548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-fbas 19564  df-fg 19565  df-top 20521  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-fil 21460  df-flim 21553
This theorem is referenced by:  flimcls  21599
  Copyright terms: Public domain W3C validator