MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Unicode version

Theorem fgcl 19426
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )

Proof of Theorem fgcl
Dummy variables  v  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 19419 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( z  e.  ( X filGen F )  <-> 
( z  C_  X  /\  E. y  e.  F  y  C_  z ) ) )
2 elfvex 5712 . 2  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  _V )
3 fbasne0 19378 . . . . . 6  |-  ( F  e.  ( fBas `  X
)  ->  F  =/=  (/) )
4 n0 3641 . . . . . 6  |-  ( F  =/=  (/)  <->  E. y  y  e.  F )
53, 4sylib 196 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  E. y 
y  e.  F )
6 fbelss 19381 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  F )  ->  y  C_  X )
76ex 434 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  ( y  e.  F  ->  y  C_  X ) )
87ancld 553 . . . . . 6  |-  ( F  e.  ( fBas `  X
)  ->  ( y  e.  F  ->  ( y  e.  F  /\  y  C_  X ) ) )
98eximdv 1676 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  ( E. y  y  e.  F  ->  E. y ( y  e.  F  /\  y  C_  X ) ) )
105, 9mpd 15 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  E. y
( y  e.  F  /\  y  C_  X ) )
11 df-rex 2716 . . . 4  |-  ( E. y  e.  F  y 
C_  X  <->  E. y
( y  e.  F  /\  y  C_  X ) )
1210, 11sylibr 212 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  E. y  e.  F  y  C_  X )
13 elfvdm 5711 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
14 sseq2 3373 . . . . . 6  |-  ( z  =  X  ->  (
y  C_  z  <->  y  C_  X ) )
1514rexbidv 2731 . . . . 5  |-  ( z  =  X  ->  ( E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  X ) )
1615sbcieg 3214 . . . 4  |-  ( X  e.  dom  fBas  ->  (
[. X  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  X ) )
1713, 16syl 16 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  ( [. X  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  X ) )
1812, 17mpbird 232 . 2  |-  ( F  e.  ( fBas `  X
)  ->  [. X  / 
z ]. E. y  e.  F  y  C_  z
)
19 0nelfb 19379 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
20 0ex 4417 . . . . 5  |-  (/)  e.  _V
21 sseq2 3373 . . . . . 6  |-  ( z  =  (/)  ->  ( y 
C_  z  <->  y  C_  (/) ) )
2221rexbidv 2731 . . . . 5  |-  ( z  =  (/)  ->  ( E. y  e.  F  y 
C_  z  <->  E. y  e.  F  y  C_  (/) ) )
2320, 22sbcie 3216 . . . 4  |-  ( [. (/)  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  (/) )
24 ss0 3663 . . . . . . 7  |-  ( y 
C_  (/)  ->  y  =  (/) )
2524eleq1d 2504 . . . . . 6  |-  ( y 
C_  (/)  ->  ( y  e.  F  <->  (/)  e.  F ) )
2625biimpac 486 . . . . 5  |-  ( ( y  e.  F  /\  y  C_  (/) )  ->  (/)  e.  F
)
2726rexlimiva 2831 . . . 4  |-  ( E. y  e.  F  y 
C_  (/)  ->  (/)  e.  F
)
2823, 27sylbi 195 . . 3  |-  ( [. (/)  /  z ]. E. y  e.  F  y  C_  z  ->  (/)  e.  F
)
2919, 28nsyl 121 . 2  |-  ( F  e.  ( fBas `  X
)  ->  -.  [. (/)  /  z ]. E. y  e.  F  y  C_  z )
30 sstr 3359 . . . . . 6  |-  ( ( y  C_  v  /\  v  C_  u )  -> 
y  C_  u )
3130expcom 435 . . . . 5  |-  ( v 
C_  u  ->  (
y  C_  v  ->  y 
C_  u ) )
3231reximdv 2822 . . . 4  |-  ( v 
C_  u  ->  ( E. y  e.  F  y  C_  v  ->  E. y  e.  F  y  C_  u ) )
33323ad2ant3 1011 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  u  C_  X  /\  v  C_  u )  ->  ( E. y  e.  F  y  C_  v  ->  E. y  e.  F  y  C_  u ) )
34 vex 2970 . . . 4  |-  v  e. 
_V
35 sseq2 3373 . . . . 5  |-  ( z  =  v  ->  (
y  C_  z  <->  y  C_  v ) )
3635rexbidv 2731 . . . 4  |-  ( z  =  v  ->  ( E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  v ) )
3734, 36sbcie 3216 . . 3  |-  ( [. v  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  v )
38 vex 2970 . . . 4  |-  u  e. 
_V
39 sseq2 3373 . . . . 5  |-  ( z  =  u  ->  (
y  C_  z  <->  y  C_  u ) )
4039rexbidv 2731 . . . 4  |-  ( z  =  u  ->  ( E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  u ) )
4138, 40sbcie 3216 . . 3  |-  ( [. u  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  u )
4233, 37, 413imtr4g 270 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  u  C_  X  /\  v  C_  u )  ->  ( [. v  /  z ]. E. y  e.  F  y  C_  z  ->  [. u  /  z ]. E. y  e.  F  y  C_  z ) )
43 fbasssin 19384 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( fBas `  X )  /\  z  e.  F  /\  w  e.  F )  ->  E. y  e.  F  y  C_  ( z  i^i  w
) )
44433expib 1190 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  X
)  ->  ( (
z  e.  F  /\  w  e.  F )  ->  E. y  e.  F  y  C_  ( z  i^i  w ) ) )
45 ss2in 3572 . . . . . . . . . . . . . 14  |-  ( ( z  C_  u  /\  w  C_  v )  -> 
( z  i^i  w
)  C_  ( u  i^i  v ) )
46 sstr2 3358 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  ( z  i^i  w )  ->  (
( z  i^i  w
)  C_  ( u  i^i  v )  ->  y  C_  ( u  i^i  v
) ) )
4746com12 31 . . . . . . . . . . . . . . 15  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  (
y  C_  ( z  i^i  w )  ->  y  C_  ( u  i^i  v
) ) )
4847reximdv 2822 . . . . . . . . . . . . . 14  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  ( E. y  e.  F  y  C_  ( z  i^i  w )  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) )
4945, 48syl 16 . . . . . . . . . . . . 13  |-  ( ( z  C_  u  /\  w  C_  v )  -> 
( E. y  e.  F  y  C_  (
z  i^i  w )  ->  E. y  e.  F  y  C_  ( u  i^i  v ) ) )
5049com12 31 . . . . . . . . . . . 12  |-  ( E. y  e.  F  y 
C_  ( z  i^i  w )  ->  (
( z  C_  u  /\  w  C_  v )  ->  E. y  e.  F  y  C_  ( u  i^i  v ) ) )
5144, 50syl6 33 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  X
)  ->  ( (
z  e.  F  /\  w  e.  F )  ->  ( ( z  C_  u  /\  w  C_  v
)  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) ) )
5251exp5c 616 . . . . . . . . . 10  |-  ( F  e.  ( fBas `  X
)  ->  ( z  e.  F  ->  ( w  e.  F  ->  (
z  C_  u  ->  ( w  C_  v  ->  E. y  e.  F  y 
C_  ( u  i^i  v ) ) ) ) ) )
5352imp31 432 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  X )  /\  z  e.  F
)  /\  w  e.  F )  ->  (
z  C_  u  ->  ( w  C_  v  ->  E. y  e.  F  y 
C_  ( u  i^i  v ) ) ) )
5453impancom 440 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  z  e.  F
)  /\  z  C_  u )  ->  (
w  e.  F  -> 
( w  C_  v  ->  E. y  e.  F  y  C_  ( u  i^i  v ) ) ) )
5554rexlimdv 2835 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  z  e.  F
)  /\  z  C_  u )  ->  ( E. w  e.  F  w  C_  v  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) )
5655ex 434 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  z  e.  F )  ->  (
z  C_  u  ->  ( E. w  e.  F  w  C_  v  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) ) )
5756rexlimdva 2836 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  ( E. z  e.  F  z  C_  u  ->  ( E. w  e.  F  w  C_  v  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) ) )
5857impd 431 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( ( E. z  e.  F  z  C_  u  /\  E. w  e.  F  w  C_  v )  ->  E. y  e.  F  y  C_  ( u  i^i  v
) ) )
59583ad2ant1 1009 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  u  C_  X  /\  v  C_  X )  ->  (
( E. z  e.  F  z  C_  u  /\  E. w  e.  F  w  C_  v )  ->  E. y  e.  F  y  C_  ( u  i^i  v ) ) )
60 sseq1 3372 . . . . . 6  |-  ( y  =  z  ->  (
y  C_  u  <->  z  C_  u ) )
6160cbvrexv 2943 . . . . 5  |-  ( E. y  e.  F  y 
C_  u  <->  E. z  e.  F  z  C_  u )
6241, 61bitri 249 . . . 4  |-  ( [. u  /  z ]. E. y  e.  F  y  C_  z  <->  E. z  e.  F  z  C_  u )
63 sseq1 3372 . . . . . 6  |-  ( y  =  w  ->  (
y  C_  v  <->  w  C_  v
) )
6463cbvrexv 2943 . . . . 5  |-  ( E. y  e.  F  y 
C_  v  <->  E. w  e.  F  w  C_  v
)
6537, 64bitri 249 . . . 4  |-  ( [. v  /  z ]. E. y  e.  F  y  C_  z  <->  E. w  e.  F  w  C_  v )
6662, 65anbi12i 697 . . 3  |-  ( (
[. u  /  z ]. E. y  e.  F  y  C_  z  /\  [. v  /  z ]. E. y  e.  F  y  C_  z )  <->  ( E. z  e.  F  z  C_  u  /\  E. w  e.  F  w  C_  v
) )
6738inex1 4428 . . . 4  |-  ( u  i^i  v )  e. 
_V
68 sseq2 3373 . . . . 5  |-  ( z  =  ( u  i^i  v )  ->  (
y  C_  z  <->  y  C_  ( u  i^i  v
) ) )
6968rexbidv 2731 . . . 4  |-  ( z  =  ( u  i^i  v )  ->  ( E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  ( u  i^i  v
) ) )
7067, 69sbcie 3216 . . 3  |-  ( [. ( u  i^i  v
)  /  z ]. E. y  e.  F  y  C_  z  <->  E. y  e.  F  y  C_  ( u  i^i  v
) )
7159, 66, 703imtr4g 270 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  u  C_  X  /\  v  C_  X )  ->  (
( [. u  /  z ]. E. y  e.  F  y  C_  z  /\  [. v  /  z ]. E. y  e.  F  y  C_  z )  ->  [. (
u  i^i  v )  /  z ]. E. y  e.  F  y  C_  z ) )
721, 2, 18, 29, 42, 71isfild 19406 1  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   E.wrex 2711   [.wsbc 3181    i^i cin 3322    C_ wss 3323   (/)c0 3632   dom cdm 4835   ` cfv 5413  (class class class)co 6086   fBascfbas 17779   filGencfg 17780   Filcfil 19393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-fbas 17789  df-fg 17790  df-fil 19394
This theorem is referenced by:  fgabs  19427  trfg  19439  isufil2  19456  ssufl  19466  ufileu  19467  filufint  19468  fixufil  19470  uffixfr  19471  fmfil  19492  fmfg  19497  elfm3  19498  rnelfm  19501  fmfnfmlem2  19503  fmfnfm  19506  fbflim  19524  hausflim  19529  flimclslem  19532  flffbas  19543  fclsbas  19569  fclsfnflim  19575  flimfnfcls  19576  fclscmp  19578  haustsms  19681  tsmscls  19683  tsmsmhm  19695  tsmsadd  19696  cfilufg  19843  metustOLD  20117  metust  20118  fgcfil  20757  cmetcaulem  20774  cmetss  20800  minveclem4a  20892  minveclem4  20894
  Copyright terms: Public domain W3C validator