Proof of Theorem uffixfr
Step | Hyp | Ref
| Expression |
1 | | simpl 472 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ∈ (UFil‘𝑋)) |
2 | | ufilfil 21518 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
3 | | filtop 21469 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ 𝐹) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝑋 ∈ 𝐹) |
6 | | filn0 21476 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
7 | | intssuni 4434 |
. . . . . . . . 9
⊢ (𝐹 ≠ ∅ → ∩ 𝐹
⊆ ∪ 𝐹) |
8 | 2, 6, 7 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹
⊆ ∪ 𝐹) |
9 | | filunibas 21495 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
10 | 2, 9 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 =
𝑋) |
11 | 8, 10 | sseqtrd 3604 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹
⊆ 𝑋) |
12 | 11 | sselda 3568 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ 𝑋) |
13 | | uffix 21535 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐹 ∧ 𝐴 ∈ 𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |
14 | 5, 12, 13 | syl2anc 691 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |
15 | 14 | simprd 478 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}})) |
16 | 14 | simpld 474 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {{𝐴}} ∈ (fBas‘𝑋)) |
17 | | fgcl 21492 |
. . . . 5
⊢ ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
19 | 15, 18 | eqeltrd 2688 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋)) |
20 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
21 | | filsspw 21465 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
22 | 20, 21 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ⊆ 𝒫 𝑋) |
23 | | elintg 4418 |
. . . . . 6
⊢ (𝐴 ∈ ∩ 𝐹
→ (𝐴 ∈ ∩ 𝐹
↔ ∀𝑥 ∈
𝐹 𝐴 ∈ 𝑥)) |
24 | 23 | ibi 255 |
. . . . 5
⊢ (𝐴 ∈ ∩ 𝐹
→ ∀𝑥 ∈
𝐹 𝐴 ∈ 𝑥) |
25 | 24 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
26 | | ssrab 3643 |
. . . 4
⊢ (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
27 | 22, 25, 26 | sylanbrc 695 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
28 | | ufilmax 21521 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
29 | 1, 19, 27, 28 | syl3anc 1318 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
30 | | eqimss 3620 |
. . . . 5
⊢ (𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
31 | 30 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
32 | 26 | simprbi 479 |
. . . 4
⊢ (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
33 | 31, 32 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
34 | | eleq2 2677 |
. . . . . 6
⊢ (𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → (𝑋 ∈ 𝐹 ↔ 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) |
35 | 34 | biimpac 502 |
. . . . 5
⊢ ((𝑋 ∈ 𝐹 ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
36 | 4, 35 | sylan 487 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
37 | | eleq2 2677 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑋)) |
38 | 37 | elrab 3331 |
. . . . 5
⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝑋 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑋)) |
39 | 38 | simprbi 479 |
. . . 4
⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → 𝐴 ∈ 𝑋) |
40 | | elintg 4418 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ∩ 𝐹 ↔ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
41 | 36, 39, 40 | 3syl 18 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → (𝐴 ∈ ∩ 𝐹 ↔ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
42 | 33, 41 | mpbird 246 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐴 ∈ ∩ 𝐹) |
43 | 29, 42 | impbida 873 |
1
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) |