Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumc Structured version   Visualization version   GIF version

Theorem esumc 29440
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
esumc.0 𝑘𝐷
esumc.1 𝑘𝜑
esumc.2 𝑘𝐴
esumc.3 (𝑦 = 𝐶𝐷 = 𝐵)
esumc.4 (𝜑𝐴𝑉)
esumc.5 (𝜑 → Fun (𝑘𝐴𝐶))
esumc.6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumc.7 ((𝜑𝑘𝐴) → 𝐶𝑊)
Assertion
Ref Expression
esumc (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Distinct variable groups:   𝑦,𝑘,𝑧   𝑦,𝐴,𝑧   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑘)   𝐵(𝑧,𝑘)   𝐶(𝑘)   𝐷(𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑦,𝑧,𝑘)

Proof of Theorem esumc
StepHypRef Expression
1 esumc.1 . . 3 𝑘𝜑
2 esumc.0 . . 3 𝑘𝐷
3 nfcv 2751 . . 3 𝑦𝐵
4 nfre1 2988 . . . 4 𝑘𝑘𝐴 𝑧 = 𝐶
54nfab 2755 . . 3 𝑘{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
6 esumc.2 . . 3 𝑘𝐴
7 nfmpt1 4675 . . 3 𝑘(𝑘𝐴𝐶)
8 esumc.3 . . 3 (𝑦 = 𝐶𝐷 = 𝐵)
9 esumc.4 . . . . 5 (𝜑𝐴𝑉)
10 elex 3185 . . . . 5 (𝐴𝑉𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
126, 11abrexexd 28731 . . 3 (𝜑 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ∈ V)
13 esumc.7 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶𝑊)
1413ex 449 . . . . . 6 (𝜑 → (𝑘𝐴𝐶𝑊))
151, 14ralrimi 2940 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶𝑊)
166fnmptf 5929 . . . . 5 (∀𝑘𝐴 𝐶𝑊 → (𝑘𝐴𝐶) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐶) Fn 𝐴)
18 esumc.5 . . . 4 (𝜑 → Fun (𝑘𝐴𝐶))
19 eqid 2610 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2019rnmpt 5292 . . . . 5 ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
2120a1i 11 . . . 4 (𝜑 → ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
22 dff1o2 6055 . . . 4 ((𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ((𝑘𝐴𝐶) Fn 𝐴 ∧ Fun (𝑘𝐴𝐶) ∧ ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}))
2317, 18, 21, 22syl3anbrc 1239 . . 3 (𝜑 → (𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
24 simpr 476 . . . 4 ((𝜑𝑘𝐴) → 𝑘𝐴)
256fvmpt2f 6192 . . . 4 ((𝑘𝐴𝐶𝑊) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
2624, 13, 25syl2anc 691 . . 3 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
27 vex 3176 . . . . . 6 𝑦 ∈ V
28 eqeq1 2614 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝐶𝑦 = 𝐶))
2928rexbidv 3034 . . . . . 6 (𝑧 = 𝑦 → (∃𝑘𝐴 𝑧 = 𝐶 ↔ ∃𝑘𝐴 𝑦 = 𝐶))
3027, 29elab 3319 . . . . 5 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ∃𝑘𝐴 𝑦 = 𝐶)
318reximi 2994 . . . . 5 (∃𝑘𝐴 𝑦 = 𝐶 → ∃𝑘𝐴 𝐷 = 𝐵)
3230, 31sylbi 206 . . . 4 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} → ∃𝑘𝐴 𝐷 = 𝐵)
33 nfcv 2751 . . . . . . 7 𝑘(0[,]+∞)
342, 33nfel 2763 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
35 esumc.6 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
36 eleq1 2676 . . . . . . . 8 (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
3735, 36syl5ibrcom 236 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
3837ex 449 . . . . . 6 (𝜑 → (𝑘𝐴 → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞))))
391, 34, 38rexlimd 3008 . . . . 5 (𝜑 → (∃𝑘𝐴 𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
4039imp 444 . . . 4 ((𝜑 ∧ ∃𝑘𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4132, 40sylan2 490 . . 3 ((𝜑𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞))
421, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41esumf1o 29439 . 2 (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘𝐴𝐵)
4342eqcomd 2616 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  {cab 2596  wnfc 2738  wral 2896  wrex 2897  Vcvv 3173  cmpt 4643  ccnv 5037  ran crn 5039  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  [,]cicc 12049  Σ*cesum 29416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-xadd 11823  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-ordt 15984  df-xrs 15985  df-ps 17023  df-tsr 17024  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cntz 17573  df-cmn 18018  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-nei 20712  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-esum 29417
This theorem is referenced by:  esumrnmpt  29441  esum2dlem  29481  measvunilem  29602  omssubadd  29689
  Copyright terms: Public domain W3C validator