Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   GIF version

Theorem ellimcabssub0 38684
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f 𝐹 = (𝑥𝐴𝐵)
ellimcabssub0.g 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
ellimcabssub0.a (𝜑𝐴 ⊆ ℂ)
ellimcabssub0.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
ellimcabssub0.p (𝜑𝐷 ∈ ℂ)
ellimcabssub0.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ellimcabssub0 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem ellimcabssub0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 0cnd 9912 . . . 4 (𝜑 → 0 ∈ ℂ)
31, 22thd 254 . . 3 (𝜑 → (𝐶 ∈ ℂ ↔ 0 ∈ ℂ))
4 ellimcabssub0.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
51adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
64, 5subcld 10271 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
7 ellimcabssub0.g . . . . . . . . . . . . 13 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
86, 7fmptd 6292 . . . . . . . . . . . 12 (𝜑𝐺:𝐴⟶ℂ)
98ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
109subid1d 10260 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐺𝑧) − 0) = (𝐺𝑧))
11 simpr 476 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
12 vex 3176 . . . . . . . . . . . . . 14 𝑧 ∈ V
13 csbov1g 6588 . . . . . . . . . . . . . 14 (𝑧 ∈ V → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
1412, 13ax-mp 5 . . . . . . . . . . . . 13 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
16 sban 2387 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴))
17 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑥𝜑
1817sbf 2368 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝜑𝜑)
19 clelsb3 2716 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
2018, 19anbi12i 729 . . . . . . . . . . . . . . . . 17 (([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴) ↔ (𝜑𝑧𝐴))
2116, 20bitri 263 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴))
224nfth 1718 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2322sbf 2368 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ))
24 sbim 2383 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2523, 24sylbb1 226 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2621, 25syl5bir 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
274, 26ax-mp 5 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ)
28 sbsbc 3406 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ [𝑧 / 𝑥]𝐵 ∈ ℂ)
29 sbcel1g 3939 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ))
3012, 29ax-mp 5 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3128, 30bitri 263 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3227, 31sylib 207 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝐵 ∈ ℂ)
331adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝐶 ∈ ℂ)
3432, 33subcld 10271 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑧 / 𝑥𝐵𝐶) ∈ ℂ)
3515, 34eqeltrd 2688 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) ∈ ℂ)
367fvmpts 6194 . . . . . . . . . . 11 ((𝑧𝐴𝑧 / 𝑥(𝐵𝐶) ∈ ℂ) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
3711, 35, 36syl2anc 691 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
38 ellimcabssub0.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
3938fvmpts 6194 . . . . . . . . . . . . 13 ((𝑧𝐴𝑧 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
4011, 32, 39syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
4140oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝑧 / 𝑥𝐵𝐶))
4241, 14syl6reqr 2663 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = ((𝐹𝑧) − 𝐶))
4310, 37, 423eqtrrd 2649 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = ((𝐺𝑧) − 0))
4443fveq2d 6107 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘((𝐺𝑧) − 0)))
4544breq1d 4593 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑧) − 0)) < 𝑦))
4645imbi2d 329 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4746ralbidva 2968 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4847rexbidv 3034 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4948ralbidv 2969 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
503, 49anbi12d 743 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦)) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
514, 38fmptd 6292 . . 3 (𝜑𝐹:𝐴⟶ℂ)
52 ellimcabssub0.a . . 3 (𝜑𝐴 ⊆ ℂ)
53 ellimcabssub0.p . . 3 (𝜑𝐷 ∈ ℂ)
5451, 52, 53ellimc3 23449 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦))))
558, 52, 53ellimc3 23449 . 2 (𝜑 → (0 ∈ (𝐺 lim 𝐷) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
5650, 54, 553bitr4d 299 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  [wsb 1867  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  [wsbc 3402  csb 3499  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   < clt 9953  cmin 10145  +crp 11708  abscabs 13822   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436
This theorem is referenced by:  reclimc  38720
  Copyright terms: Public domain W3C validator