MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Structured version   Visualization version   GIF version

Theorem efgi 17955
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩))

Proof of Theorem efgi
Dummy variables 𝑎 𝑏 𝑖 𝑟 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . . . . . 11 (𝑢 = 𝐴 → (#‘𝑢) = (#‘𝐴))
21oveq2d 6565 . . . . . . . . . 10 (𝑢 = 𝐴 → (0...(#‘𝑢)) = (0...(#‘𝐴)))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝐴𝑢 = 𝐴)
4 oveq1 6556 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
53, 4breq12d 4596 . . . . . . . . . . 11 (𝑢 = 𝐴 → (𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
652ralbidv 2972 . . . . . . . . . 10 (𝑢 = 𝐴 → (∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
72, 6raleqbidv 3129 . . . . . . . . 9 (𝑢 = 𝐴 → (∀𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑖 ∈ (0...(#‘𝐴))∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
87rspcv 3278 . . . . . . . 8 (𝐴𝑊 → (∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → ∀𝑖 ∈ (0...(#‘𝐴))∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
9 oteq1 4349 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)
10 oteq2 4350 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)
119, 10eqtrd 2644 . . . . . . . . . . . 12 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)
1211oveq2d 6565 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
1312breq2d 4595 . . . . . . . . . 10 (𝑖 = 𝑁 → (𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
14132ralbidv 2972 . . . . . . . . 9 (𝑖 = 𝑁 → (∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
1514rspcv 3278 . . . . . . . 8 (𝑁 ∈ (0...(#‘𝐴)) → (∀𝑖 ∈ (0...(#‘𝐴))∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
168, 15sylan9 687 . . . . . . 7 ((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) → (∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
17 opeq1 4340 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, 𝑏⟩ = ⟨𝐽, 𝑏⟩)
18 opeq1 4340 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, (1𝑜𝑏)⟩ = ⟨𝐽, (1𝑜𝑏)⟩)
1917, 18s2eqd 13459 . . . . . . . . . . 11 (𝑎 = 𝐽 → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩)
2019oteq3d 4354 . . . . . . . . . 10 (𝑎 = 𝐽 → ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩)
2120oveq2d 6565 . . . . . . . . 9 (𝑎 = 𝐽 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩))
2221breq2d 4595 . . . . . . . 8 (𝑎 = 𝐽 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩)))
23 opeq2 4341 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, 𝑏⟩ = ⟨𝐽, 𝐾⟩)
24 difeq2 3684 . . . . . . . . . . . . . 14 (𝑏 = 𝐾 → (1𝑜𝑏) = (1𝑜𝐾))
2524opeq2d 4347 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, (1𝑜𝑏)⟩ = ⟨𝐽, (1𝑜𝐾)⟩)
2623, 25s2eqd 13459 . . . . . . . . . . . 12 (𝑏 = 𝐾 → ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩)
2726oteq3d 4354 . . . . . . . . . . 11 (𝑏 = 𝐾 → ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)
2827oveq2d 6565 . . . . . . . . . 10 (𝑏 = 𝐾 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩))
2928breq2d 4595 . . . . . . . . 9 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)))
30 df-br 4584 . . . . . . . . 9 (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟)
3129, 30syl6bb 275 . . . . . . . 8 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1𝑜𝑏)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3222, 31rspc2v 3293 . . . . . . 7 ((𝐽𝐼𝐾 ∈ 2𝑜) → (∀𝑎𝐼𝑏 ∈ 2𝑜 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3316, 32sylan9 687 . . . . . 6 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → (∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3433adantld 482 . . . . 5 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → ((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3534alrimiv 1842 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
36 opex 4859 . . . . 5 𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ V
3736elintab 4422 . . . 4 (⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3835, 37sylibr 223 . . 3 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))})
39 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
40 efgval.r . . . 4 = ( ~FG𝐼)
4139, 40efgval 17953 . . 3 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(#‘𝑢))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))}
4238, 41syl6eleqr 2699 . 2 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ )
43 df-br 4584 . 2 (𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩)⟩ ∈ )
4442, 43sylibr 223 1 (((𝐴𝑊𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2𝑜)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1𝑜𝐾)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wral 2896  cdif 3537  cop 4131  cotp 4133   cint 4410   class class class wbr 4583   I cid 4948   × cxp 5036  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441   Er wer 7626  0cc0 9815  ...cfz 12197  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437   ~FG cefg 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-efg 17945
This theorem is referenced by:  efgi0  17956  efgi1  17957
  Copyright terms: Public domain W3C validator