Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgi0 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efgi0 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4718 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | 1 | prid1 4241 | . . . . 5 ⊢ ∅ ∈ {∅, 1𝑜} |
3 | df2o3 7460 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
4 | 2, 3 | eleqtrri 2687 | . . . 4 ⊢ ∅ ∈ 2𝑜 |
5 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
6 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
7 | 5, 6 | efgi 17955 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ ∅ ∈ 2𝑜)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉)) |
8 | 4, 7 | mpanr2 716 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉)) |
9 | 8 | 3impa 1251 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉)) |
10 | tru 1479 | . . . 4 ⊢ ⊤ | |
11 | eqidd 2611 | . . . . 5 ⊢ (⊤ → 〈𝐽, ∅〉 = 〈𝐽, ∅〉) | |
12 | dif0 3904 | . . . . . . 7 ⊢ (1𝑜 ∖ ∅) = 1𝑜 | |
13 | 12 | opeq2i 4344 | . . . . . 6 ⊢ 〈𝐽, (1𝑜 ∖ ∅)〉 = 〈𝐽, 1𝑜〉 |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1𝑜 ∖ ∅)〉 = 〈𝐽, 1𝑜〉) |
15 | 11, 14 | s2eqd 13459 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉) |
16 | oteq3 4351 | . . . 4 ⊢ (〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉 = 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉〉) | |
17 | 10, 15, 16 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉〉 |
18 | 17 | oveq2i 6560 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, (1𝑜 ∖ ∅)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉〉) |
19 | 9, 18 | syl6breq 4624 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, ∅〉〈𝐽, 1𝑜〉”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ⊤wtru 1476 ∈ wcel 1977 ∖ cdif 3537 ∅c0 3874 {cpr 4127 〈cop 4131 〈cotp 4133 class class class wbr 4583 I cid 4948 × cxp 5036 ‘cfv 5804 (class class class)co 6549 1𝑜c1o 7440 2𝑜c2o 7441 0cc0 9815 ...cfz 12197 #chash 12979 Word cword 13146 splice csplice 13151 〈“cs2 13437 ~FG cefg 17942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-s2 13444 df-efg 17945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |