MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Structured version   Unicode version

Theorem efgi 17063
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgi  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)

Proof of Theorem efgi
Dummy variables  a 
b  i  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5851 . . . . . . . . . . 11  |-  ( u  =  A  ->  ( # `
 u )  =  ( # `  A
) )
21oveq2d 6296 . . . . . . . . . 10  |-  ( u  =  A  ->  (
0 ... ( # `  u
) )  =  ( 0 ... ( # `  A ) ) )
3 id 23 . . . . . . . . . . . 12  |-  ( u  =  A  ->  u  =  A )
4 oveq1 6287 . . . . . . . . . . . 12  |-  ( u  =  A  ->  (
u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
53, 4breq12d 4410 . . . . . . . . . . 11  |-  ( u  =  A  ->  (
u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
652ralbidv 2850 . . . . . . . . . 10  |-  ( u  =  A  ->  ( A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
72, 6raleqbidv 3020 . . . . . . . . 9  |-  ( u  =  A  ->  ( A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  <->  A. i  e.  ( 0 ... ( # `  A ) ) A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
87rspcv 3158 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. i  e.  ( 0 ... ( # `
 A ) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
9 oteq1 4170 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
10 oteq2 4171 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
119, 10eqtrd 2445 . . . . . . . . . . . 12  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
1211oveq2d 6296 . . . . . . . . . . 11  |-  ( i  =  N  ->  ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
1312breq2d 4409 . . . . . . . . . 10  |-  ( i  =  N  ->  ( A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
14132ralbidv 2850 . . . . . . . . 9  |-  ( i  =  N  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
1514rspcv 3158 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( A. i  e.  (
0 ... ( # `  A
) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
168, 15sylan9 657 . . . . . . 7  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
17 opeq1 4161 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  b >.  =  <. J ,  b >. )
18 opeq1 4161 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. J ,  ( 1o  \ 
b ) >. )
1917, 18s2eqd 12885 . . . . . . . . . . 11  |-  ( a  =  J  ->  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. ">  =  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> )
2019oteq3d 4175 . . . . . . . . . 10  |-  ( a  =  J  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2120oveq2d 6296 . . . . . . . . 9  |-  ( a  =  J  ->  ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )
)
2221breq2d 4409 . . . . . . . 8  |-  ( a  =  J  ->  ( A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >. )
) )
23 opeq2 4162 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
b >.  =  <. J ,  K >. )
24 difeq2 3557 . . . . . . . . . . . . . 14  |-  ( b  =  K  ->  ( 1o  \  b )  =  ( 1o  \  K
) )
2524opeq2d 4168 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
( 1o  \  b
) >.  =  <. J , 
( 1o  \  K
) >. )
2623, 25s2eqd 12885 . . . . . . . . . . . 12  |-  ( b  =  K  ->  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. ">  =  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> )
2726oteq3d 4175 . . . . . . . . . . 11  |-  ( b  =  K  ->  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
2827oveq2d 6296 . . . . . . . . . 10  |-  ( b  =  K  ->  ( A splice  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )  =  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
2928breq2d 4409 . . . . . . . . 9  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
) )
30 df-br 4398 . . . . . . . . 9  |-  ( A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r )
3129, 30syl6bb 263 . . . . . . . 8  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r ) )
3222, 31rspc2v 3171 . . . . . . 7  |-  ( ( J  e.  I  /\  K  e.  2o )  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3316, 32sylan9 657 . . . . . 6  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3433adantld 467 . . . . 5  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  (
( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3534alrimiv 1742 . . . 4  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
36 opex 4657 . . . . 5  |-  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  _V
3736elintab 4240 . . . 4  |-  ( <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }  <->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3835, 37sylibr 214 . . 3  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) } )
39 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
40 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
4139, 40efgval 17061 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }
4238, 41syl6eleqr 2503 . 2  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  .~  )
43 df-br 4398 . 2  |-  ( A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  .~  )
4442, 43sylibr 214 1  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1405    = wceq 1407    e. wcel 1844   {cab 2389   A.wral 2756    \ cdif 3413   <.cop 3980   <.cotp 3982   |^|cint 4229   class class class wbr 4397    _I cid 4735    X. cxp 4823   ` cfv 5571  (class class class)co 6280   1oc1o 7162   2oc2o 7163    Er wer 7347   0cc0 9524   ...cfz 11728   #chash 12454  Word cword 12585   splice csplice 12590   <"cs2 12864   ~FG cefg 17050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-ot 3983  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-er 7350  df-map 7461  df-pm 7462  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-card 8354  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-fz 11729  df-fzo 11857  df-hash 12455  df-word 12593  df-concat 12595  df-s1 12596  df-substr 12597  df-splice 12598  df-s2 12871  df-efg 17053
This theorem is referenced by:  efgi0  17064  efgi1  17065
  Copyright terms: Public domain W3C validator