Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh4dimN Structured version   Visualization version   GIF version

Theorem dvh4dimN 35754
Description: There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh4dimN (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh4dimN
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 35753 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
98adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}))
10 eqid 2610 . . . . . . . 8 (0g𝑈) = (0g𝑈)
111, 2, 5dvhlmod 35417 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
12 prssi 4293 . . . . . . . . 9 ((𝑌𝑉𝑍𝑉) → {𝑌, 𝑍} ⊆ 𝑉)
136, 7, 12syl2anc 691 . . . . . . . 8 (𝜑 → {𝑌, 𝑍} ⊆ 𝑉)
143, 10, 4, 11, 13lspun0 18832 . . . . . . 7 (𝜑 → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑌, 𝑍}))
15 tpeq1 4221 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {(0g𝑈), 𝑌, 𝑍})
16 tprot 4228 . . . . . . . . . 10 {(0g𝑈), 𝑌, 𝑍} = {𝑌, 𝑍, (0g𝑈)}
17 df-tp 4130 . . . . . . . . . 10 {𝑌, 𝑍, (0g𝑈)} = ({𝑌, 𝑍} ∪ {(0g𝑈)})
1816, 17eqtr2i 2633 . . . . . . . . 9 ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {(0g𝑈), 𝑌, 𝑍}
1915, 18syl6reqr 2663 . . . . . . . 8 (𝑋 = (0g𝑈) → ({𝑌, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
2019fveq2d 6107 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘({𝑌, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2114, 20sylan9req 2665 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
2221eleq2d 2673 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2322notbid 307 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
2423rexbidv 3034 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
259, 24mpbid 221 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
26 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 35753 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
2827adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
29 prssi 4293 . . . . . . . . 9 ((𝑋𝑉𝑍𝑉) → {𝑋, 𝑍} ⊆ 𝑉)
3026, 7, 29syl2anc 691 . . . . . . . 8 (𝜑 → {𝑋, 𝑍} ⊆ 𝑉)
313, 10, 4, 11, 30lspun0 18832 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑍}))
32 tpeq2 4222 . . . . . . . . 9 (𝑌 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, (0g𝑈), 𝑍})
33 df-tp 4130 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = ({𝑋, 𝑍} ∪ {(0g𝑈)})
34 tpcomb 4230 . . . . . . . . . 10 {𝑋, 𝑍, (0g𝑈)} = {𝑋, (0g𝑈), 𝑍}
3533, 34eqtr3i 2634 . . . . . . . . 9 ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, (0g𝑈), 𝑍}
3632, 35syl6reqr 2663 . . . . . . . 8 (𝑌 = (0g𝑈) → ({𝑋, 𝑍} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
3736fveq2d 6107 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘({𝑋, 𝑍} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3831, 37sylan9req 2665 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
3938eleq2d 2673 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4039notbid 307 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4140rexbidv 3034 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
4228, 41mpbid 221 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
431, 2, 3, 4, 5, 26, 6dvh3dim 35753 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
4443adantr 480 . . 3 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
45 prssi 4293 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
4626, 6, 45syl2anc 691 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
473, 10, 4, 11, 46lspun0 18832 . . . . . . 7 (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌}))
48 tpeq3 4223 . . . . . . . . 9 (𝑍 = (0g𝑈) → {𝑋, 𝑌, 𝑍} = {𝑋, 𝑌, (0g𝑈)})
49 df-tp 4130 . . . . . . . . 9 {𝑋, 𝑌, (0g𝑈)} = ({𝑋, 𝑌} ∪ {(0g𝑈)})
5048, 49syl6req 2661 . . . . . . . 8 (𝑍 = (0g𝑈) → ({𝑋, 𝑌} ∪ {(0g𝑈)}) = {𝑋, 𝑌, 𝑍})
5150fveq2d 6107 . . . . . . 7 (𝑍 = (0g𝑈) → (𝑁‘({𝑋, 𝑌} ∪ {(0g𝑈)})) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5247, 51sylan9req 2665 . . . . . 6 ((𝜑𝑍 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, 𝑌, 𝑍}))
5352eleq2d 2673 . . . . 5 ((𝜑𝑍 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5453notbid 307 . . . 4 ((𝜑𝑍 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5554rexbidv 3034 . . 3 ((𝜑𝑍 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))
5644, 55mpbid 221 . 2 ((𝜑𝑍 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
575adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5826adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋𝑉)
596adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌𝑉)
607adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍𝑉)
61 simpr1 1060 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
62 simpr2 1061 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
63 simpr3 1062 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → 𝑍 ≠ (0g𝑈))
641, 2, 3, 4, 57, 58, 59, 60, 10, 61, 62, 63dvh4dimlem 35750 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈) ∧ 𝑍 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
6525, 42, 56, 64pm2.61da3ne 2871 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cun 3538  wss 3540  {csn 4125  {cpr 4127  {ctp 4129  cfv 5804  Basecbs 15695  0gc0g 15923  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator