Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslcm Structured version   Visualization version   GIF version

Theorem dvdslcm 15149
 Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
dvdslcm ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))

Proof of Theorem dvdslcm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvds0 14835 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∥ 0)
21ad2antrr 758 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ 0)
3 oveq1 6556 . . . . . . 7 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
4 0z 11265 . . . . . . . . 9 0 ∈ ℤ
5 lcmcom 15144 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁))
64, 5mpan2 703 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁))
7 lcm0val 15145 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
86, 7eqtr3d 2646 . . . . . . 7 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
93, 8sylan9eqr 2666 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
109adantll 746 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
11 oveq2 6557 . . . . . . 7 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
12 lcm0val 15145 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
1311, 12sylan9eqr 2666 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
1413adantlr 747 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
1510, 14jaodan 822 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0)
162, 15breqtrrd 4611 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 lcm 𝑁))
17 dvds0 14835 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
1817ad2antlr 759 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ 0)
1918, 15breqtrrd 4611 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 lcm 𝑁))
2016, 19jca 553 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21 lcmcllem 15147 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
22 lcmn0cl 15148 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
23 breq2 4587 . . . . . 6 (𝑛 = (𝑀 lcm 𝑁) → (𝑀𝑛𝑀 ∥ (𝑀 lcm 𝑁)))
24 breq2 4587 . . . . . 6 (𝑛 = (𝑀 lcm 𝑁) → (𝑁𝑛𝑁 ∥ (𝑀 lcm 𝑁)))
2523, 24anbi12d 743 . . . . 5 (𝑛 = (𝑀 lcm 𝑁) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2625elrab3 3332 . . . 4 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2722, 26syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2821, 27mpbid 221 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2920, 28pm2.61dan 828 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900   class class class wbr 4583  (class class class)co 6549  0cc0 9815  ℕcn 10897  ℤcz 11254   ∥ cdvds 14821   lcm clcm 15139 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-lcm 15141 This theorem is referenced by:  gcddvdslcm  15153  lcmneg  15154  lcmgcdeq  15163  lcmdvdsb  15164  lcmftp  15187  lcmfunsnlem2lem2  15190  nzin  37539
 Copyright terms: Public domain W3C validator