Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nzin | Structured version Visualization version GIF version |
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nzin.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
nzin.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
nzin | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 14826 | . . . . . . . . 9 ⊢ (𝑀 ∥ 𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
2 | dvdszrcl 14826 | . . . . . . . . 9 ⊢ (𝑁 ∥ 𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
3 | 1, 2 | anim12i 588 | . . . . . . . 8 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) |
4 | anandir 868 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) | |
5 | 3, 4 | sylibr 223 | . . . . . . 7 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ)) |
6 | 5 | ancomd 466 | . . . . . 6 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | lcmdvds 15159 | . . . . . . 7 ⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) | |
8 | 7 | 3expb 1258 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) |
9 | 6, 8 | mpcom 37 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛) |
10 | elin 3758 | . . . . . 6 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁}))) | |
11 | reldvds 37536 | . . . . . . . 8 ⊢ Rel ∥ | |
12 | elrelimasn 5408 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛) |
14 | elrelimasn 5408 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛)) | |
15 | 11, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛) |
16 | 13, 15 | anbi12i 729 | . . . . . 6 ⊢ ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
17 | 10, 16 | bitri 263 | . . . . 5 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
18 | elrelimasn 5408 | . . . . . 6 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)) | |
19 | 11, 18 | ax-mp 5 | . . . . 5 ⊢ (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛) |
20 | 9, 17, 19 | 3imtr4i 280 | . . . 4 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)})) |
21 | 20 | ssriv 3572 | . . 3 ⊢ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})) |
23 | nzin.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
24 | nzin.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
25 | dvdslcm 15149 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
26 | 23, 24, 25 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
27 | 26 | simpld 474 | . . . 4 ⊢ (𝜑 → 𝑀 ∥ (𝑀 lcm 𝑁)) |
28 | lcmcl 15152 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
29 | 23, 24, 28 | syl2anc 691 | . . . . . 6 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
30 | 29 | nn0zd 11356 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ) |
31 | 30, 23 | nzss 37538 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) |
32 | 27, 31 | mpbird 246 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀})) |
33 | 26 | simprd 478 | . . . 4 ⊢ (𝜑 → 𝑁 ∥ (𝑀 lcm 𝑁)) |
34 | 30, 24 | nzss 37538 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) |
35 | 33, 34 | mpbird 246 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁})) |
36 | 32, 35 | ssind 3799 | . 2 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) |
37 | 22, 36 | eqssd 3585 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ⊆ wss 3540 {csn 4125 class class class wbr 4583 “ cima 5041 Rel wrel 5043 (class class class)co 6549 ℕ0cn0 11169 ℤcz 11254 ∥ cdvds 14821 lcm clcm 15139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-dvds 14822 df-gcd 15055 df-lcm 15141 |
This theorem is referenced by: nzprmdif 37540 |
Copyright terms: Public domain | W3C validator |