MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcom Structured version   Visualization version   GIF version

Theorem lcmcom 15144
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))

Proof of Theorem lcmcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 orcom 401 . . 3 ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0))
2 ancom 465 . . . . . 6 ((𝑀𝑛𝑁𝑛) ↔ (𝑁𝑛𝑀𝑛))
32a1i 11 . . . . 5 (𝑛 ∈ ℕ → ((𝑀𝑛𝑁𝑛) ↔ (𝑁𝑛𝑀𝑛)))
43rabbiia 3161 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}
54infeq1i 8267 . . 3 inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )
61, 5ifbieq2i 4060 . 2 if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < ))
7 lcmval 15143 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
8 lcmval 15143 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
98ancoms 468 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
106, 7, 93eqtr4a 2670 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {crab 2900  ifcif 4036   class class class wbr 4583  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815   < clt 9953  cn 10897  cz 11254  cdvds 14821   lcm clcm 15139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-lcm 15141
This theorem is referenced by:  dvdslcm  15149  lcmeq0  15151  lcmcl  15152  lcmneg  15154  neglcm  15155  lcmgcd  15158  lcmdvds  15159  lcmftp  15187  lcmfunsnlem2  15191  lcmfunsnlem  15192  lcmf2a3a4e12  15198
  Copyright terms: Public domain W3C validator