MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   GIF version

Theorem divalglem5 14958
Description: Lemma for divalg 14964. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem5.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem5 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6 𝑅 = inf(𝑆, ℝ, < )
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 divalglem0.2 . . . . . . 7 𝐷 ∈ ℤ
4 divalglem1.3 . . . . . . 7 𝐷 ≠ 0
5 divalglem2.4 . . . . . . 7 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 14956 . . . . . 6 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2684 . . . . 5 𝑅𝑆
8 oveq2 6557 . . . . . . 7 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
98breq2d 4595 . . . . . 6 (𝑥 = 𝑅 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁𝑅)))
10 oveq2 6557 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1110breq2d 4595 . . . . . . . 8 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1211cbvrabv 3172 . . . . . . 7 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
135, 12eqtri 2632 . . . . . 6 𝑆 = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
149, 13elrab2 3333 . . . . 5 (𝑅𝑆 ↔ (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
157, 14mpbi 219 . . . 4 (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅))
1615simpli 473 . . 3 𝑅 ∈ ℕ0
1716nn0ge0i 11197 . 2 0 ≤ 𝑅
18 nnabscl 13913 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
193, 4, 18mp2an 704 . . . . . 6 (abs‘𝐷) ∈ ℕ
2019nngt0i 10931 . . . . 5 0 < (abs‘𝐷)
21 0re 9919 . . . . . 6 0 ∈ ℝ
22 zcn 11259 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
233, 22ax-mp 5 . . . . . . 7 𝐷 ∈ ℂ
2423abscli 13982 . . . . . 6 (abs‘𝐷) ∈ ℝ
2521, 24ltnlei 10037 . . . . 5 (0 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 0)
2620, 25mpbi 219 . . . 4 ¬ (abs‘𝐷) ≤ 0
27 ssrab2 3650 . . . . . . . . 9 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} ⊆ ℕ0
285, 27eqsstri 3598 . . . . . . . 8 𝑆 ⊆ ℕ0
29 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
3028, 29sseqtri 3600 . . . . . . 7 𝑆 ⊆ (ℤ‘0)
31 nn0abscl 13900 . . . . . . . . . 10 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
323, 31ax-mp 5 . . . . . . . . 9 (abs‘𝐷) ∈ ℕ0
33 nn0sub2 11315 . . . . . . . . 9 (((abs‘𝐷) ∈ ℕ0𝑅 ∈ ℕ0 ∧ (abs‘𝐷) ≤ 𝑅) → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3432, 16, 33mp3an12 1406 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3515a1i 11 . . . . . . . . 9 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
36 nn0z 11277 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
37 1z 11284 . . . . . . . . . . . . 13 1 ∈ ℤ
382, 3divalglem0 14954 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3937, 38mpan2 703 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
4024recni 9931 . . . . . . . . . . . . . . . 16 (abs‘𝐷) ∈ ℂ
4140mulid2i 9922 . . . . . . . . . . . . . . 15 (1 · (abs‘𝐷)) = (abs‘𝐷)
4241oveq2i 6560 . . . . . . . . . . . . . 14 (𝑅 − (1 · (abs‘𝐷))) = (𝑅 − (abs‘𝐷))
4342oveq2i 6560 . . . . . . . . . . . . 13 (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) = (𝑁 − (𝑅 − (abs‘𝐷)))
4443breq2i 4591 . . . . . . . . . . . 12 (𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4539, 44syl6ib 240 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4636, 45syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4746imp 444 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4835, 47syl 17 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
49 oveq2 6557 . . . . . . . . . 10 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝑁𝑥) = (𝑁 − (𝑅 − (abs‘𝐷))))
5049breq2d 4595 . . . . . . . . 9 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5150, 13elrab2 3333 . . . . . . . 8 ((𝑅 − (abs‘𝐷)) ∈ 𝑆 ↔ ((𝑅 − (abs‘𝐷)) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5234, 48, 51sylanbrc 695 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ 𝑆)
53 infssuzle 11647 . . . . . . 7 ((𝑆 ⊆ (ℤ‘0) ∧ (𝑅 − (abs‘𝐷)) ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
5430, 52, 53sylancr 694 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
551, 54syl5eqbr 4618 . . . . 5 ((abs‘𝐷) ≤ 𝑅𝑅 ≤ (𝑅 − (abs‘𝐷)))
5635simpld 474 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℕ0)
57 nn0re 11178 . . . . . . . 8 (𝑅 ∈ ℕ0𝑅 ∈ ℝ)
5856, 57syl 17 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℝ)
59 lesub 10386 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6024, 59mp3an3 1405 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6158, 58, 60syl2anc 691 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6258recnd 9947 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℂ)
6362subidd 10259 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅𝑅) = 0)
6463breq2d 4595 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → ((abs‘𝐷) ≤ (𝑅𝑅) ↔ (abs‘𝐷) ≤ 0))
6561, 64bitrd 267 . . . . 5 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ 0))
6655, 65mpbid 221 . . . 4 ((abs‘𝐷) ≤ 𝑅 → (abs‘𝐷) ≤ 0)
6726, 66mto 187 . . 3 ¬ (abs‘𝐷) ≤ 𝑅
6816, 57ax-mp 5 . . . 4 𝑅 ∈ ℝ
6968, 24ltnlei 10037 . . 3 (𝑅 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 𝑅)
7067, 69mpbir 220 . 2 𝑅 < (abs‘𝐷)
7117, 70pm3.2i 470 1 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  abscabs 13822  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822
This theorem is referenced by:  divalglem9  14962
  Copyright terms: Public domain W3C validator