Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crctcsh1wlkn0lem2 Structured version   Visualization version   GIF version

Theorem crctcsh1wlkn0lem2 41014
Description: Lemma for crctcsh1wlkn0 41024. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcsh1wlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcsh1wlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcsh1wlkn0lem2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcsh1wlkn0lem2
StepHypRef Expression
1 crctcsh1wlkn0lem.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
21a1i 11 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))))
3 breq1 4586 . . . . 5 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
4 oveq1 6556 . . . . . 6 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fveq2d 6107 . . . . 5 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
64oveq1d 6564 . . . . . 6 (𝑥 = 𝐽 → ((𝑥 + 𝑆) − 𝑁) = ((𝐽 + 𝑆) − 𝑁))
76fveq2d 6107 . . . . 5 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
83, 5, 7ifbieq12d 4063 . . . 4 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
98adantl 481 . . 3 (((𝜑𝐽 ∈ (0...(𝑁𝑆))) ∧ 𝑥 = 𝐽) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
10 crctcsh1wlkn0lem.s . . . . 5 (𝜑𝑆 ∈ (1..^𝑁))
11 fzo0ss1 12367 . . . . . 6 (1..^𝑁) ⊆ (0..^𝑁)
1211sseli 3564 . . . . 5 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁))
13 elfzoel2 12338 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
14 elfzonn0 12380 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
15 eluzmn 11570 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
1613, 14, 15syl2anc 691 . . . . . . 7 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
17 fzss2 12252 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑁𝑆)) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1816, 17syl 17 . . . . . 6 (𝑆 ∈ (0..^𝑁) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1918sseld 3567 . . . . 5 (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
2010, 12, 193syl 18 . . . 4 (𝜑 → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
2120imp 444 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ∈ (0...𝑁))
22 fvex 6113 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
23 fvex 6113 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
2422, 23ifex 4106 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
2524a1i 11 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
262, 9, 21, 25fvmptd 6197 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
27 elfzle2 12216 . . . 4 (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ≤ (𝑁𝑆))
2827adantl 481 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ≤ (𝑁𝑆))
2928iftrued 4044 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆)))
3026, 29eqtrd 2644 1 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cmin 10145  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  crctcsh1wlkn0lem4  41016  crctcsh1wlkn0lem6  41018
  Copyright terms: Public domain W3C validator