Step | Hyp | Ref
| Expression |
1 | | cpmatsrngpmat.s |
. . . 4
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
2 | | cpmatsrngpmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | cpmatsrngpmat.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
4 | | eqid 2610 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
5 | 1, 2, 3, 4 | cpmatelimp 20336 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)))) |
6 | 1, 2, 3, 4 | cpmatelimp 20336 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
8 | | ralcom 3079 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑙 ∈
𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
9 | | r19.26-2 3047 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
10 | | ralcom 3079 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
11 | 9, 10 | bitr3i 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
12 | | nfv 1830 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
13 | | nfra1 2925 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
14 | 12, 13 | nfan 1816 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
15 | | simp-4r 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(Base‘𝑃) =
(Base‘𝑃) |
17 | | simplrl 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
18 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
19 | | simplrl 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑥 ∈ (Base‘𝐶)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑥 ∈ (Base‘𝐶)) |
21 | 3, 16, 4, 17, 18, 20 | matecld 20051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃)) |
22 | | simplrr 797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
23 | | simplrr 797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑦 ∈ (Base‘𝐶)) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑦 ∈ (Base‘𝐶)) |
25 | 3, 16, 4, 18, 22, 24 | matecld 20051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃)) |
26 | 15, 21, 25 | jca32 556 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
27 | 26 | adantlr 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
28 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘)) |
29 | 28 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘))) |
30 | 29 | fveq1d 6105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐)) |
31 | 30 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅))) |
32 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑙 = 𝑘 → (𝑙𝑦𝑗) = (𝑘𝑦𝑗)) |
33 | 32 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗))) |
34 | 33 | fveq1d 6105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐)) |
35 | 34 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
36 | 31, 35 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
37 | 36 | rspcva 3280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
39 | 38 | exp4b 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑐 ∈ ℕ → (𝑘 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
40 | 39 | com23 84 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ 𝑁 → (𝑐 ∈ ℕ → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
41 | 40 | imp31 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
42 | 41 | ralimdva 2945 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
43 | 42 | impancom 455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑘 ∈ 𝑁 → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
44 | 43 | imp 444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
45 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(0g‘𝑅) = (0g‘𝑅) |
46 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(.r‘𝑃) = (.r‘𝑃) |
47 | 2, 16, 45, 46 | cply1mul 19485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅))) |
48 | 27, 44, 47 | sylc 63 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
49 | 48 | r19.21bi 2916 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) →
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
50 | 49 | an32s 842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘 ∈ 𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
51 | 50 | mpteq2dva 4672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) |
52 | 51 | oveq2d 6565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅)))) |
53 | | ringmnd 18379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
54 | 53 | anim2i 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd)) |
55 | 54 | ancomd 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin)) |
56 | 45 | gsumz 17197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
58 | 57 | ad4antr 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
59 | 52, 58 | eqtrd 2644 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
60 | 59 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
61 | 14, 60 | ralrimi 2940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
62 | | simp-4r 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring) |
63 | | nnnn0 11176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0) |
65 | 2 | ply1ring 19439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
66 | 65 | ad4antlr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑃 ∈ Ring) |
67 | 16, 46 | ringcl 18384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
68 | 66, 21, 25, 67 | syl3anc 1318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
69 | 68 | ralrimiva 2949 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
71 | | simp-4l 802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin) |
72 | 2, 16, 62, 64, 70, 71 | coe1fzgsumd 19493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)))) |
73 | 72 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
(((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
74 | 73 | ralbidva 2968 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
76 | 61, 75 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |
77 | 76 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
78 | 11, 77 | syl5bi 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
79 | 78 | expd 451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
80 | 79 | expr 641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
81 | 80 | com23 84 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
82 | 81 | imp31 447 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) ∧ 𝑗 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
83 | 82 | ralimdva 2945 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
84 | 8, 83 | syl5bi 231 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
85 | 84 | ex 449 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
86 | 85 | com23 84 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
87 | 86 | impancom 455 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (𝑖 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
88 | 87 | imp 444 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
89 | 88 | ralimdva 2945 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
90 | 89 | ex 449 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
91 | 90 | expr 641 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
92 | 91 | impd 446 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
93 | 7, 92 | syld 46 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
94 | 93 | com23 84 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
95 | 94 | ex 449 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
96 | 95 | impd 446 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
97 | 5, 96 | syld 46 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
98 | 97 | imp32 448 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |