Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  copco Structured version   Visualization version   GIF version

Theorem copco 22626
 Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
copco.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
copco (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)))

Proof of Theorem copco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . . . . . 8 (𝜑𝐹 ∈ (II Cn 𝐽))
2 iiuni 22492 . . . . . . . . 9 (0[,]1) = II
3 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
42, 3cnf 20860 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
51, 4syl 17 . . . . . . 7 (𝜑𝐹:(0[,]1)⟶ 𝐽)
6 elii1 22542 . . . . . . . 8 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
7 iihalf1 22538 . . . . . . . 8 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
86, 7sylbir 224 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
9 fvco3 6185 . . . . . . 7 ((𝐹:(0[,]1)⟶ 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
105, 8, 9syl2an 493 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
1110anassrs 678 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
1211ifeq1da 4066 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), ((𝐻𝐺)‘((2 · 𝑥) − 1))))
13 pcoval.3 . . . . . . . 8 (𝜑𝐺 ∈ (II Cn 𝐽))
142, 3cnf 20860 . . . . . . . 8 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶ 𝐽)
1513, 14syl 17 . . . . . . 7 (𝜑𝐺:(0[,]1)⟶ 𝐽)
16 elii2 22543 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
17 iihalf2 22540 . . . . . . . 8 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1816, 17syl 17 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
19 fvco3 6185 . . . . . . 7 ((𝐺:(0[,]1)⟶ 𝐽 ∧ ((2 · 𝑥) − 1) ∈ (0[,]1)) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
2015, 18, 19syl2an 493 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
2120anassrs 678 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
2221ifeq2da 4067 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), ((𝐻𝐺)‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1)))))
2312, 22eqtrd 2644 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1)))))
2423mpteq2dva 4672 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))))
25 copco.6 . . . 4 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
26 cnco 20880 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (𝐽 Cn 𝐾)) → (𝐻𝐹) ∈ (II Cn 𝐾))
271, 25, 26syl2anc 691 . . 3 (𝜑 → (𝐻𝐹) ∈ (II Cn 𝐾))
28 cnco 20880 . . . 4 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (𝐽 Cn 𝐾)) → (𝐻𝐺) ∈ (II Cn 𝐾))
2913, 25, 28syl2anc 691 . . 3 (𝜑 → (𝐻𝐺) ∈ (II Cn 𝐾))
3027, 29pcoval 22619 . 2 (𝜑 → ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1)))))
311, 13pcoval 22619 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
32 pcoval2.4 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐺‘0))
331, 13, 32pcocn 22625 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
3431, 33eqeltrrd 2689 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
352, 3cnf 20860 . . . . 5 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
3634, 35syl 17 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
37 eqid 2610 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
3837fmpt 6289 . . . 4 (∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) ∈ 𝐽 ↔ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
3936, 38sylibr 223 . . 3 (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) ∈ 𝐽)
40 eqid 2610 . . . . . 6 𝐾 = 𝐾
413, 40cnf 20860 . . . . 5 (𝐻 ∈ (𝐽 Cn 𝐾) → 𝐻: 𝐽 𝐾)
4225, 41syl 17 . . . 4 (𝜑𝐻: 𝐽 𝐾)
4342feqmptd 6159 . . 3 (𝜑𝐻 = (𝑦 𝐽 ↦ (𝐻𝑦)))
44 fveq2 6103 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) → (𝐻𝑦) = (𝐻‘if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
45 fvif 6114 . . . 4 (𝐻‘if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
4644, 45syl6eq 2660 . . 3 (𝑦 = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) → (𝐻𝑦) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1)))))
4739, 31, 43, 46fmptcof 6304 . 2 (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))))
4824, 30, 473eqtr4rd 2655 1 (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ifcif 4036  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  [,]cicc 12049   Cn ccn 20838  IIcii 22486  *𝑝cpco 22608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-pco 22613 This theorem is referenced by:  pi1coghm  22669  cvmlift3lem6  30560
 Copyright terms: Public domain W3C validator