MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copco Structured version   Unicode version

Theorem copco 21384
Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
pcoval2.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
copco.6  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
Assertion
Ref Expression
copco  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( ( H  o.  F ) ( *p `  K
) ( H  o.  G ) ) )

Proof of Theorem copco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . . . . . 8  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 iiuni 21251 . . . . . . . . 9  |-  ( 0 [,] 1 )  = 
U. II
3 eqid 2441 . . . . . . . . 9  |-  U. J  =  U. J
42, 3cnf 19613 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
51, 4syl 16 . . . . . . 7  |-  ( ph  ->  F : ( 0 [,] 1 ) --> U. J )
6 elii1 21301 . . . . . . . 8  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
7 iihalf1 21297 . . . . . . . 8  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
86, 7sylbir 213 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
9 fvco3 5931 . . . . . . 7  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  ( 2  x.  x )  e.  ( 0 [,] 1
) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
105, 8, 9syl2an 477 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
1110anassrs 648 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
1211ifeq1da 3952 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( ( H  o.  G ) `  ( ( 2  x.  x )  -  1 ) ) ) )
13 pcoval.3 . . . . . . . 8  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
142, 3cnf 19613 . . . . . . . 8  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> U. J
)
1513, 14syl 16 . . . . . . 7  |-  ( ph  ->  G : ( 0 [,] 1 ) --> U. J )
16 elii2 21302 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
17 iihalf2 21299 . . . . . . . 8  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
1816, 17syl 16 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
19 fvco3 5931 . . . . . . 7  |-  ( ( G : ( 0 [,] 1 ) --> U. J  /\  ( ( 2  x.  x )  -  1 )  e.  ( 0 [,] 1
) )  ->  (
( H  o.  G
) `  ( (
2  x.  x )  -  1 ) )  =  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2015, 18, 19syl2an 477 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  -.  x  <_  ( 1  /  2
) ) )  -> 
( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) )  =  ( H `
 ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2120anassrs 648 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) )  =  ( H `
 ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2221ifeq2da 3953 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( ( H  o.  G ) `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_ 
( 1  /  2
) ,  ( H `
 ( F `  ( 2  x.  x
) ) ) ,  ( H `  ( G `  ( (
2  x.  x )  -  1 ) ) ) ) )
2312, 22eqtrd 2482 . . 3  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
2423mpteq2dva 4519 . 2  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( H  o.  F ) `
 ( 2  x.  x ) ) ,  ( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( H `
 ( F `  ( 2  x.  x
) ) ) ,  ( H `  ( G `  ( (
2  x.  x )  -  1 ) ) ) ) ) )
25 copco.6 . . . 4  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
26 cnco 19633 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  H  e.  ( J  Cn  K ) )  -> 
( H  o.  F
)  e.  ( II 
Cn  K ) )
271, 25, 26syl2anc 661 . . 3  |-  ( ph  ->  ( H  o.  F
)  e.  ( II 
Cn  K ) )
28 cnco 19633 . . . 4  |-  ( ( G  e.  ( II 
Cn  J )  /\  H  e.  ( J  Cn  K ) )  -> 
( H  o.  G
)  e.  ( II 
Cn  K ) )
2913, 25, 28syl2anc 661 . . 3  |-  ( ph  ->  ( H  o.  G
)  e.  ( II 
Cn  K ) )
3027, 29pcoval 21377 . 2  |-  ( ph  ->  ( ( H  o.  F ) ( *p
`  K ) ( H  o.  G ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
311, 13pcoval 21377 . . . . . 6  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
32 pcoval2.4 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
331, 13, 32pcocn 21383 . . . . . 6  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
3431, 33eqeltrrd 2530 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) )  e.  ( II  Cn  J
) )
352, 3cnf 19613 . . . . 5  |-  ( ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )  e.  ( II  Cn  J )  ->  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) : ( 0 [,] 1 ) --> U. J
)
3634, 35syl 16 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) ) : ( 0 [,] 1
) --> U. J )
37 eqid 2441 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )
3837fmpt 6033 . . . 4  |-  ( A. x  e.  ( 0 [,] 1 ) if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  e.  U. J  <->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) : ( 0 [,] 1 ) --> U. J )
3936, 38sylibr 212 . . 3  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) )  e.  U. J )
40 eqid 2441 . . . . . 6  |-  U. K  =  U. K
413, 40cnf 19613 . . . . 5  |-  ( H  e.  ( J  Cn  K )  ->  H : U. J --> U. K
)
4225, 41syl 16 . . . 4  |-  ( ph  ->  H : U. J --> U. K )
4342feqmptd 5907 . . 3  |-  ( ph  ->  H  =  ( y  e.  U. J  |->  ( H `  y ) ) )
44 fveq2 5852 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  -> 
( H `  y
)  =  ( H `
 if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
45 fvif 5863 . . . 4  |-  ( H `
 if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
4644, 45syl6eq 2498 . . 3  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  -> 
( H `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
4739, 31, 43, 46fmptcof 6046 . 2  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) ) )
4824, 30, 473eqtr4rd 2493 1  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( ( H  o.  F ) ( *p `  K
) ( H  o.  G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   ifcif 3922   U.cuni 4230   class class class wbr 4433    |-> cmpt 4491    o. ccom 4989   -->wf 5570   ` cfv 5574  (class class class)co 6277   0cc0 9490   1c1 9491    x. cmul 9495    <_ cle 9627    - cmin 9805    / cdiv 10207   2c2 10586   [,]cicc 11536    Cn ccn 19591   IIcii 21245   *pcpco 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-icc 11540  df-fz 11677  df-fzo 11799  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-mulg 15929  df-cntz 16224  df-cmn 16669  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-cn 19594  df-cnp 19595  df-tx 19929  df-hmeo 20122  df-xms 20689  df-ms 20690  df-tms 20691  df-ii 21247  df-pco 21371
This theorem is referenced by:  pi1coghm  21427  cvmlift3lem6  28635
  Copyright terms: Public domain W3C validator