MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copco Structured version   Unicode version

Theorem copco 20490
Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
pcoval2.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
copco.6  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
Assertion
Ref Expression
copco  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( ( H  o.  F ) ( *p `  K
) ( H  o.  G ) ) )

Proof of Theorem copco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . . . . . 8  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 iiuni 20357 . . . . . . . . 9  |-  ( 0 [,] 1 )  = 
U. II
3 eqid 2441 . . . . . . . . 9  |-  U. J  =  U. J
42, 3cnf 18750 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
51, 4syl 16 . . . . . . 7  |-  ( ph  ->  F : ( 0 [,] 1 ) --> U. J )
6 elii1 20407 . . . . . . . 8  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
7 iihalf1 20403 . . . . . . . 8  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
86, 7sylbir 213 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
9 fvco3 5765 . . . . . . 7  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  ( 2  x.  x )  e.  ( 0 [,] 1
) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
105, 8, 9syl2an 474 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
1110anassrs 643 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
( H  o.  F
) `  ( 2  x.  x ) )  =  ( H `  ( F `  ( 2  x.  x ) ) ) )
1211ifeq1da 3816 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( ( H  o.  G ) `  ( ( 2  x.  x )  -  1 ) ) ) )
13 pcoval.3 . . . . . . . 8  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
142, 3cnf 18750 . . . . . . . 8  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> U. J
)
1513, 14syl 16 . . . . . . 7  |-  ( ph  ->  G : ( 0 [,] 1 ) --> U. J )
16 elii2 20408 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
17 iihalf2 20405 . . . . . . . 8  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
1816, 17syl 16 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
19 fvco3 5765 . . . . . . 7  |-  ( ( G : ( 0 [,] 1 ) --> U. J  /\  ( ( 2  x.  x )  -  1 )  e.  ( 0 [,] 1
) )  ->  (
( H  o.  G
) `  ( (
2  x.  x )  -  1 ) )  =  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2015, 18, 19syl2an 474 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  -.  x  <_  ( 1  /  2
) ) )  -> 
( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) )  =  ( H `
 ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2120anassrs 643 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) )  =  ( H `
 ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
2221ifeq2da 3817 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( ( H  o.  G ) `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_ 
( 1  /  2
) ,  ( H `
 ( F `  ( 2  x.  x
) ) ) ,  ( H `  ( G `  ( (
2  x.  x )  -  1 ) ) ) ) )
2312, 22eqtrd 2473 . . 3  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
2423mpteq2dva 4375 . 2  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( H  o.  F ) `
 ( 2  x.  x ) ) ,  ( ( H  o.  G ) `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( H `
 ( F `  ( 2  x.  x
) ) ) ,  ( H `  ( G `  ( (
2  x.  x )  -  1 ) ) ) ) ) )
25 copco.6 . . . 4  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
26 cnco 18770 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  H  e.  ( J  Cn  K ) )  -> 
( H  o.  F
)  e.  ( II 
Cn  K ) )
271, 25, 26syl2anc 656 . . 3  |-  ( ph  ->  ( H  o.  F
)  e.  ( II 
Cn  K ) )
28 cnco 18770 . . . 4  |-  ( ( G  e.  ( II 
Cn  J )  /\  H  e.  ( J  Cn  K ) )  -> 
( H  o.  G
)  e.  ( II 
Cn  K ) )
2913, 25, 28syl2anc 656 . . 3  |-  ( ph  ->  ( H  o.  G
)  e.  ( II 
Cn  K ) )
3027, 29pcoval 20483 . 2  |-  ( ph  ->  ( ( H  o.  F ) ( *p
`  K ) ( H  o.  G ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( ( H  o.  F ) `  (
2  x.  x ) ) ,  ( ( H  o.  G ) `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
311, 13pcoval 20483 . . . . . 6  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
32 pcoval2.4 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
331, 13, 32pcocn 20489 . . . . . 6  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
3431, 33eqeltrrd 2516 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) )  e.  ( II  Cn  J
) )
352, 3cnf 18750 . . . . 5  |-  ( ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )  e.  ( II  Cn  J )  ->  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) : ( 0 [,] 1 ) --> U. J
)
3634, 35syl 16 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) ) : ( 0 [,] 1
) --> U. J )
37 eqid 2441 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )
3837fmpt 5861 . . . 4  |-  ( A. x  e.  ( 0 [,] 1 ) if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  e.  U. J  <->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) : ( 0 [,] 1 ) --> U. J )
3936, 38sylibr 212 . . 3  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) )  e.  U. J )
40 eqid 2441 . . . . . 6  |-  U. K  =  U. K
413, 40cnf 18750 . . . . 5  |-  ( H  e.  ( J  Cn  K )  ->  H : U. J --> U. K
)
4225, 41syl 16 . . . 4  |-  ( ph  ->  H : U. J --> U. K )
4342feqmptd 5741 . . 3  |-  ( ph  ->  H  =  ( y  e.  U. J  |->  ( H `  y ) ) )
44 fveq2 5688 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  -> 
( H `  y
)  =  ( H `
 if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
45 fvif 5699 . . . 4  |-  ( H `
 if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( H `  ( F `
 ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
4644, 45syl6eq 2489 . . 3  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  -> 
( H `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) )
4739, 31, 43, 46fmptcof 5874 . 2  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( H `  ( F `  ( 2  x.  x ) ) ) ,  ( H `  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) ) )
4824, 30, 473eqtr4rd 2484 1  |-  ( ph  ->  ( H  o.  ( F ( *p `  J ) G ) )  =  ( ( H  o.  F ) ( *p `  K
) ( H  o.  G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   ifcif 3788   U.cuni 4088   class class class wbr 4289    e. cmpt 4347    o. ccom 4840   -->wf 5411   ` cfv 5415  (class class class)co 6090   0cc0 9278   1c1 9279    x. cmul 9283    <_ cle 9415    - cmin 9591    / cdiv 9989   2c2 10367   [,]cicc 11299    Cn ccn 18728   IIcii 20351   *pcpco 20472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-cn 18731  df-cnp 18732  df-tx 19035  df-hmeo 19228  df-xms 19795  df-ms 19796  df-tms 19797  df-ii 20353  df-pco 20477
This theorem is referenced by:  pi1coghm  20533  cvmlift3lem6  27127
  Copyright terms: Public domain W3C validator