MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 21293
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
21adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
3 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
43adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
5 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
6 topontop 20541 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
75, 6syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
87adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
9 eqid 2610 . . . . . . . . 9 𝐿 = 𝐿
109toptopon 20548 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
118, 10sylib 207 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
12 cnmptk1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 topontop 20541 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
143, 13syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ Top)
15 eqid 2610 . . . . . . . . . . . 12 (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾)
1615xkotopon 21213 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1714, 7, 16syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
18 cnmptkp.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
19 cnf2 20863 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2012, 17, 18, 19syl3anc 1318 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
21 eqid 2610 . . . . . . . . . 10 (𝑥𝑋 ↦ (𝑦𝑌𝐴)) = (𝑥𝑋 ↦ (𝑦𝑌𝐴))
2221fmpt 6289 . . . . . . . . 9 (∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿) ↔ (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2320, 22sylibr 223 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
2423r19.21bi 2916 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
25 cnf2 20863 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
264, 11, 24, 25syl3anc 1318 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
27 eqid 2610 . . . . . . 7 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2827fmpt 6289 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2926, 28sylibr 223 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
30 cnmptkp.c . . . . . . 7 (𝑦 = 𝐵𝐴 = 𝐶)
3130eleq1d 2672 . . . . . 6 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
3231rspcv 3278 . . . . 5 (𝐵𝑌 → (∀𝑦𝑌 𝐴 𝐿𝐶 𝐿))
332, 29, 32sylc 63 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
3430, 27fvmptg 6189 . . . 4 ((𝐵𝑌𝐶 𝐿) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
352, 33, 34syl2anc 691 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3635mpteq2dva 4672 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
37 toponuni 20542 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
383, 37syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
391, 38eleqtrd 2690 . . . 4 (𝜑𝐵 𝐾)
40 eqid 2610 . . . . 5 𝐾 = 𝐾
4140xkopjcn 21269 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿))
4214, 7, 39, 41syl3anc 1318 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿))
43 fveq1 6102 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
4412, 18, 17, 42, 43cnmpt11 21276 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
4536, 44eqeltrrd 2689 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896   cuni 4372  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ^ko cxko 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cmp 21000  df-xko 21176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator