Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldnm Structured version   Visualization version   GIF version

Theorem cnfldnm 22392
 Description: The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
cnfldnm abs = (norm‘ℂfld)

Proof of Theorem cnfldnm
StepHypRef Expression
1 0cn 9911 . . . . 5 0 ∈ ℂ
2 eqid 2610 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
32cnmetdval 22384 . . . . 5 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
41, 3mpan2 703 . . . 4 (𝑥 ∈ ℂ → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
5 subid1 10180 . . . . 5 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
65fveq2d 6107 . . . 4 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
74, 6eqtrd 2644 . . 3 (𝑥 ∈ ℂ → (𝑥(abs ∘ − )0) = (abs‘𝑥))
87mpteq2ia 4668 . 2 (𝑥 ∈ ℂ ↦ (𝑥(abs ∘ − )0)) = (𝑥 ∈ ℂ ↦ (abs‘𝑥))
9 eqid 2610 . . 3 (norm‘ℂfld) = (norm‘ℂfld)
10 cnfldbas 19571 . . 3 ℂ = (Base‘ℂfld)
11 cnfld0 19589 . . 3 0 = (0g‘ℂfld)
12 cnfldds 19577 . . 3 (abs ∘ − ) = (dist‘ℂfld)
139, 10, 11, 12nmfval 22203 . 2 (norm‘ℂfld) = (𝑥 ∈ ℂ ↦ (𝑥(abs ∘ − )0))
14 absf 13925 . . . . 5 abs:ℂ⟶ℝ
1514a1i 11 . . . 4 (⊤ → abs:ℂ⟶ℝ)
1615feqmptd 6159 . . 3 (⊤ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
1716trud 1484 . 2 abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))
188, 13, 173eqtr4ri 2643 1 abs = (norm‘ℂfld)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977   ↦ cmpt 4643   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   − cmin 10145  abscabs 13822  ℂfldccnfld 19567  normcnm 22191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-cmn 18018  df-mgp 18313  df-ring 18372  df-cring 18373  df-cnfld 19568  df-nm 22197 This theorem is referenced by:  cnngp  22393  cnnrg  22394  abscn  22457  clmabs  22691  isncvsngp  22757  cnnm  22768  cnncvsabsnegdemo  22773  tchcph  22844  zringnm  29332  cnzh  29342  rezh  29343
 Copyright terms: Public domain W3C validator