Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1498 Structured version   Visualization version   GIF version

Theorem bnj1498 30383
Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1498.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1498.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1498.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1498.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1498 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1498
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4460 . . . . . . 7 (𝑧 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑧 ∈ dom 𝑓)
2 bnj1498.3 . . . . . . . . . . . . . . . 16 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
32bnj1436 30164 . . . . . . . . . . . . . . 15 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
43bnj1299 30143 . . . . . . . . . . . . . 14 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
5 fndm 5904 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
64, 5bnj31 30039 . . . . . . . . . . . . 13 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
76bnj1196 30119 . . . . . . . . . . . 12 (𝑓𝐶 → ∃𝑑(𝑑𝐵 ∧ dom 𝑓 = 𝑑))
8 bnj1498.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
98bnj1436 30164 . . . . . . . . . . . . . 14 (𝑑𝐵 → (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
109simpld 474 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
1110anim1i 590 . . . . . . . . . . . 12 ((𝑑𝐵 ∧ dom 𝑓 = 𝑑) → (𝑑𝐴 ∧ dom 𝑓 = 𝑑))
127, 11bnj593 30069 . . . . . . . . . . 11 (𝑓𝐶 → ∃𝑑(𝑑𝐴 ∧ dom 𝑓 = 𝑑))
13 sseq1 3589 . . . . . . . . . . . 12 (dom 𝑓 = 𝑑 → (dom 𝑓𝐴𝑑𝐴))
1413biimparc 503 . . . . . . . . . . 11 ((𝑑𝐴 ∧ dom 𝑓 = 𝑑) → dom 𝑓𝐴)
1512, 14bnj593 30069 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑dom 𝑓𝐴)
1615bnj937 30096 . . . . . . . . 9 (𝑓𝐶 → dom 𝑓𝐴)
1716sselda 3568 . . . . . . . 8 ((𝑓𝐶𝑧 ∈ dom 𝑓) → 𝑧𝐴)
1817rexlimiva 3010 . . . . . . 7 (∃𝑓𝐶 𝑧 ∈ dom 𝑓𝑧𝐴)
191, 18sylbi 206 . . . . . 6 (𝑧 𝑓𝐶 dom 𝑓𝑧𝐴)
202bnj1317 30146 . . . . . . 7 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
2120bnj1400 30160 . . . . . 6 dom 𝐶 = 𝑓𝐶 dom 𝑓
2219, 21eleq2s 2706 . . . . 5 (𝑧 ∈ dom 𝐶𝑧𝐴)
23 bnj1498.4 . . . . . 6 𝐹 = 𝐶
2423dmeqi 5247 . . . . 5 dom 𝐹 = dom 𝐶
2522, 24eleq2s 2706 . . . 4 (𝑧 ∈ dom 𝐹𝑧𝐴)
2625ssriv 3572 . . 3 dom 𝐹𝐴
2726a1i 11 . 2 (𝑅 FrSe 𝐴 → dom 𝐹𝐴)
28 bnj1498.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
298, 28, 2bnj1493 30381 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
30 vsnid 4156 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
31 elun1 3742 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
3230, 31ax-mp 5 . . . . . . . . . 10 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
33 eleq2 2677 . . . . . . . . . 10 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → (𝑥 ∈ dom 𝑓𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
3432, 33mpbiri 247 . . . . . . . . 9 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → 𝑥 ∈ dom 𝑓)
3534reximi 2994 . . . . . . . 8 (∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3635ralimi 2936 . . . . . . 7 (∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
3729, 36syl 17 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
38 eliun 4460 . . . . . . 7 (𝑥 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3938ralbii 2963 . . . . . 6 (∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
4037, 39sylibr 223 . . . . 5 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
41 nfcv 2751 . . . . . 6 𝑥𝐴
428bnj1309 30344 . . . . . . . . 9 (𝑡𝐵 → ∀𝑥 𝑡𝐵)
432, 42bnj1307 30345 . . . . . . . 8 (𝑡𝐶 → ∀𝑥 𝑡𝐶)
4443nfcii 2742 . . . . . . 7 𝑥𝐶
45 nfcv 2751 . . . . . . 7 𝑥dom 𝑓
4644, 45nfiun 4484 . . . . . 6 𝑥 𝑓𝐶 dom 𝑓
4741, 46dfss3f 3560 . . . . 5 (𝐴 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
4840, 47sylibr 223 . . . 4 (𝑅 FrSe 𝐴𝐴 𝑓𝐶 dom 𝑓)
4948, 21syl6sseqr 3615 . . 3 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐶)
5049, 24syl6sseqr 3615 . 2 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐹)
5127, 50eqssd 3585 1 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cun 3538  wss 3540  {csn 4125  cop 4131   cuni 4372   ciun 4455  dom cdm 5038  cres 5040   Fn wfn 5799  cfv 5804   predc-bnj14 30007   FrSe w-bnj15 30011   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012  df-bnj18 30014  df-bnj19 30016
This theorem is referenced by:  bnj60  30384
  Copyright terms: Public domain W3C validator