Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1498 Structured version   Unicode version

Theorem bnj1498 31939
Description: Technical lemma for bnj60 31940. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1498.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1498.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1498.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1498.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj1498  |-  ( R 
FrSe  A  ->  dom  F  =  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj1498
Dummy variables  t 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4170 . . . . . . 7  |-  ( z  e.  U_ f  e.  C  dom  f  <->  E. f  e.  C  z  e.  dom  f )
2 bnj1498.3 . . . . . . . . . . . . . . . 16  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
32bnj1436 31720 . . . . . . . . . . . . . . 15  |-  ( f  e.  C  ->  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
43bnj1299 31699 . . . . . . . . . . . . . 14  |-  ( f  e.  C  ->  E. d  e.  B  f  Fn  d )
5 fndm 5505 . . . . . . . . . . . . . 14  |-  ( f  Fn  d  ->  dom  f  =  d )
64, 5bnj31 31595 . . . . . . . . . . . . 13  |-  ( f  e.  C  ->  E. d  e.  B  dom  f  =  d )
76bnj1196 31675 . . . . . . . . . . . 12  |-  ( f  e.  C  ->  E. d
( d  e.  B  /\  dom  f  =  d ) )
8 bnj1498.1 . . . . . . . . . . . . . . 15  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
98bnj1436 31720 . . . . . . . . . . . . . 14  |-  ( d  e.  B  ->  (
d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) )
109simpld 459 . . . . . . . . . . . . 13  |-  ( d  e.  B  ->  d  C_  A )
1110anim1i 568 . . . . . . . . . . . 12  |-  ( ( d  e.  B  /\  dom  f  =  d
)  ->  ( d  C_  A  /\  dom  f  =  d ) )
127, 11bnj593 31624 . . . . . . . . . . 11  |-  ( f  e.  C  ->  E. d
( d  C_  A  /\  dom  f  =  d ) )
13 sseq1 3372 . . . . . . . . . . . 12  |-  ( dom  f  =  d  -> 
( dom  f  C_  A 
<->  d  C_  A )
)
1413biimparc 487 . . . . . . . . . . 11  |-  ( ( d  C_  A  /\  dom  f  =  d
)  ->  dom  f  C_  A )
1512, 14bnj593 31624 . . . . . . . . . 10  |-  ( f  e.  C  ->  E. d dom  f  C_  A )
1615bnj937 31652 . . . . . . . . 9  |-  ( f  e.  C  ->  dom  f  C_  A )
1716sselda 3351 . . . . . . . 8  |-  ( ( f  e.  C  /\  z  e.  dom  f )  ->  z  e.  A
)
1817rexlimiva 2831 . . . . . . 7  |-  ( E. f  e.  C  z  e.  dom  f  -> 
z  e.  A )
191, 18sylbi 195 . . . . . 6  |-  ( z  e.  U_ f  e.  C  dom  f  -> 
z  e.  A )
202bnj1317 31702 . . . . . . 7  |-  ( w  e.  C  ->  A. f  w  e.  C )
2120bnj1400 31716 . . . . . 6  |-  dom  U. C  =  U_ f  e.  C  dom  f
2219, 21eleq2s 2530 . . . . 5  |-  ( z  e.  dom  U. C  ->  z  e.  A )
23 bnj1498.4 . . . . . 6  |-  F  = 
U. C
2423dmeqi 5036 . . . . 5  |-  dom  F  =  dom  U. C
2522, 24eleq2s 2530 . . . 4  |-  ( z  e.  dom  F  -> 
z  e.  A )
2625ssriv 3355 . . 3  |-  dom  F  C_  A
2726a1i 11 . 2  |-  ( R 
FrSe  A  ->  dom  F  C_  A )
28 bnj1498.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
298, 28, 2bnj1493 31937 . . . . . . 7  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
30 ssnid 3901 . . . . . . . . . . 11  |-  x  e. 
{ x }
31 elun1 3518 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
3230, 31ax-mp 5 . . . . . . . . . 10  |-  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) )
33 eleq2 2499 . . . . . . . . . 10  |-  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  -> 
( x  e.  dom  f 
<->  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
3432, 33mpbiri 233 . . . . . . . . 9  |-  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  ->  x  e.  dom  f )
3534reximi 2818 . . . . . . . 8  |-  ( E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  ->  E. f  e.  C  x  e.  dom  f )
3635ralimi 2786 . . . . . . 7  |-  ( A. x  e.  A  E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  ->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
3729, 36syl 16 . . . . . 6  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
38 eliun 4170 . . . . . . 7  |-  ( x  e.  U_ f  e.  C  dom  f  <->  E. f  e.  C  x  e.  dom  f )
3938ralbii 2734 . . . . . 6  |-  ( A. x  e.  A  x  e.  U_ f  e.  C  dom  f  <->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
4037, 39sylibr 212 . . . . 5  |-  ( R 
FrSe  A  ->  A. x  e.  A  x  e.  U_ f  e.  C  dom  f )
41 nfcv 2574 . . . . . 6  |-  F/_ x A
428bnj1309 31900 . . . . . . . . 9  |-  ( t  e.  B  ->  A. x  t  e.  B )
432, 42bnj1307 31901 . . . . . . . 8  |-  ( t  e.  C  ->  A. x  t  e.  C )
4443nfcii 2565 . . . . . . 7  |-  F/_ x C
45 nfcv 2574 . . . . . . 7  |-  F/_ x dom  f
4644, 45nfiun 4193 . . . . . 6  |-  F/_ x U_ f  e.  C  dom  f
4741, 46dfss3f 3343 . . . . 5  |-  ( A 
C_  U_ f  e.  C  dom  f  <->  A. x  e.  A  x  e.  U_ f  e.  C  dom  f )
4840, 47sylibr 212 . . . 4  |-  ( R 
FrSe  A  ->  A  C_  U_ f  e.  C  dom  f )
4948, 21syl6sseqr 3398 . . 3  |-  ( R 
FrSe  A  ->  A  C_  dom  U. C )
5049, 24syl6sseqr 3398 . 2  |-  ( R 
FrSe  A  ->  A  C_  dom  F )
5127, 50eqssd 3368 1  |-  ( R 
FrSe  A  ->  dom  F  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2424   A.wral 2710   E.wrex 2711    u. cun 3321    C_ wss 3323   {csn 3872   <.cop 3878   U.cuni 4086   U_ciun 4166   dom cdm 4835    |` cres 4837    Fn wfn 5408   ` cfv 5413    predc-bnj14 31563    FrSe w-bnj15 31567    trClc-bnj18 31569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-reg 7799  ax-inf2 7839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-om 6472  df-1o 6912  df-bnj17 31562  df-bnj14 31564  df-bnj13 31566  df-bnj15 31568  df-bnj18 31570  df-bnj19 31572
This theorem is referenced by:  bnj60  31940
  Copyright terms: Public domain W3C validator