Step | Hyp | Ref
| Expression |
1 | | bnj1493.1 |
. 2
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
2 | | bnj1493.2 |
. 2
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
3 | | bnj1493.3 |
. 2
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
4 | | biid 250 |
. 2
⊢ ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
5 | | eqid 2610 |
. 2
⊢ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} |
6 | | biid 250 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ↔ (𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅)) |
7 | | biid 250 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ≠ ∅) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ¬ 𝑦𝑅𝑥)) |
8 | | biid 250 |
. 2
⊢
([𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ [𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
9 | | eqid 2610 |
. 2
⊢ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} |
10 | | eqid 2610 |
. 2
⊢ ∪ {𝑓
∣ ∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} = ∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} |
11 | | eqid 2610 |
. 2
⊢
〈𝑥, (∪ {𝑓
∣ ∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉 |
12 | | eqid 2610 |
. 2
⊢ (∪ {𝑓
∣ ∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {〈𝑥, (𝐺‘〈𝑥, (∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉)〉}) = (∪ {𝑓
∣ ∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {〈𝑥, (𝐺‘〈𝑥, (∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉)〉}) |
13 | | eqid 2610 |
. 2
⊢
〈𝑧, ((∪ {𝑓
∣ ∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {〈𝑥, (𝐺‘〈𝑥, (∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉)〉}) ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, ((∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ∪ {〈𝑥, (𝐺‘〈𝑥, (∪ {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)[𝑦 / 𝑥](𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))} ↾ pred(𝑥, 𝐴, 𝑅))〉)〉}) ↾ pred(𝑧, 𝐴, 𝑅))〉 |
14 | | eqid 2610 |
. 2
⊢ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | bnj1312 30380 |
1
⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑓 ∈ 𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |