Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1400 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1400.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1400 | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmuni 5256 | . 2 ⊢ dom ∪ 𝐴 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 | |
2 | df-iun 4457 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} | |
3 | df-iun 4457 | . . . 4 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} | |
4 | bnj1400.1 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
5 | 4 | nfcii 2742 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 |
6 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
7 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑧 𝑦 ∈ dom 𝑥 | |
8 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ dom 𝑧 | |
9 | dmeq 5246 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
10 | 9 | eleq2d 2673 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑦 ∈ dom 𝑥 ↔ 𝑦 ∈ dom 𝑧)) |
11 | 5, 6, 7, 8, 10 | cbvrexf 3142 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧) |
12 | 11 | abbii 2726 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} |
13 | 3, 12 | eqtr4i 2635 | . . 3 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} |
14 | 2, 13 | eqtr4i 2635 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 |
15 | 1, 14 | eqtr4i 2635 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 = wceq 1475 ∈ wcel 1977 {cab 2596 ∃wrex 2897 ∪ cuni 4372 ∪ ciun 4455 dom cdm 5038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-dm 5048 |
This theorem is referenced by: bnj1398 30356 bnj1450 30372 bnj1498 30383 bnj1501 30389 |
Copyright terms: Public domain | W3C validator |