Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1400 Structured version   Visualization version   GIF version

Theorem bnj1400 30160
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1400.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
bnj1400 dom 𝐴 = 𝑥𝐴 dom 𝑥
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bnj1400
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dmuni 5256 . 2 dom 𝐴 = 𝑧𝐴 dom 𝑧
2 df-iun 4457 . . 3 𝑥𝐴 dom 𝑥 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥}
3 df-iun 4457 . . . 4 𝑧𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑧𝐴 𝑦 ∈ dom 𝑧}
4 bnj1400.1 . . . . . . 7 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
54nfcii 2742 . . . . . 6 𝑥𝐴
6 nfcv 2751 . . . . . 6 𝑧𝐴
7 nfv 1830 . . . . . 6 𝑧 𝑦 ∈ dom 𝑥
8 nfv 1830 . . . . . 6 𝑥 𝑦 ∈ dom 𝑧
9 dmeq 5246 . . . . . . 7 (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧)
109eleq2d 2673 . . . . . 6 (𝑥 = 𝑧 → (𝑦 ∈ dom 𝑥𝑦 ∈ dom 𝑧))
115, 6, 7, 8, 10cbvrexf 3142 . . . . 5 (∃𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑧𝐴 𝑦 ∈ dom 𝑧)
1211abbii 2726 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥} = {𝑦 ∣ ∃𝑧𝐴 𝑦 ∈ dom 𝑧}
133, 12eqtr4i 2635 . . 3 𝑧𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥}
142, 13eqtr4i 2635 . 2 𝑥𝐴 dom 𝑥 = 𝑧𝐴 dom 𝑧
151, 14eqtr4i 2635 1 dom 𝐴 = 𝑥𝐴 dom 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wrex 2897   cuni 4372   ciun 4455  dom cdm 5038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-dm 5048
This theorem is referenced by:  bnj1398  30356  bnj1450  30372  bnj1498  30383  bnj1501  30389
  Copyright terms: Public domain W3C validator