MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Visualization version   GIF version

Theorem nfcii 2742
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcii 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nf5i 2011 . 2 𝑥 𝑦𝐴
32nfci 2741 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wcel 1977  wnfc 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-10 2006
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nf 1701  df-nfc 2740
This theorem is referenced by:  bnj1316  30145  bnj1385  30157  bnj1400  30160  bnj1468  30170  bnj1534  30177  bnj1542  30181  bnj1228  30333  bnj1307  30345  bnj1448  30369  bnj1466  30375  bnj1463  30377  bnj1491  30379  bnj1312  30380  bnj1498  30383  bnj1520  30388  bnj1525  30391  bnj1529  30392  bnj1523  30393
  Copyright terms: Public domain W3C validator