Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcii | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nf5i 2011 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nfci 2741 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∈ wcel 1977 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-10 2006 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 df-nfc 2740 |
This theorem is referenced by: bnj1316 30145 bnj1385 30157 bnj1400 30160 bnj1468 30170 bnj1534 30177 bnj1542 30181 bnj1228 30333 bnj1307 30345 bnj1448 30369 bnj1466 30375 bnj1463 30377 bnj1491 30379 bnj1312 30380 bnj1498 30383 bnj1520 30388 bnj1525 30391 bnj1529 30392 bnj1523 30393 |
Copyright terms: Public domain | W3C validator |