Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1497 Structured version   Visualization version   GIF version

Theorem bnj1497 30382
 Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1497.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1497.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1497.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1497 𝑔𝐶 Fun 𝑔
Distinct variable groups:   𝐶,𝑔   𝑓,𝑑   𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑓,𝑔,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑓,𝑔,𝑑)   𝑌(𝑥,𝑓,𝑔,𝑑)

Proof of Theorem bnj1497
StepHypRef Expression
1 bnj1497.3 . . . . . 6 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
21bnj1317 30146 . . . . 5 (𝑔𝐶 → ∀𝑓 𝑔𝐶)
32nf5i 2011 . . . 4 𝑓 𝑔𝐶
4 nfv 1830 . . . 4 𝑓Fun 𝑔
53, 4nfim 1813 . . 3 𝑓(𝑔𝐶 → Fun 𝑔)
6 eleq1 2676 . . . 4 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
7 funeq 5823 . . . 4 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
86, 7imbi12d 333 . . 3 (𝑓 = 𝑔 → ((𝑓𝐶 → Fun 𝑓) ↔ (𝑔𝐶 → Fun 𝑔)))
91bnj1436 30164 . . . . . 6 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
109bnj1299 30143 . . . . 5 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
11 fnfun 5902 . . . . 5 (𝑓 Fn 𝑑 → Fun 𝑓)
1210, 11bnj31 30039 . . . 4 (𝑓𝐶 → ∃𝑑𝐵 Fun 𝑓)
1312bnj1265 30137 . . 3 (𝑓𝐶 → Fun 𝑓)
145, 8, 13chvar 2250 . 2 (𝑔𝐶 → Fun 𝑔)
1514rgen 2906 1 𝑔𝐶 Fun 𝑔
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ⟨cop 4131   ↾ cres 5040  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804   predc-bnj14 30007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-in 3547  df-ss 3554  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-fun 5806  df-fn 5807 This theorem is referenced by:  bnj60  30384
 Copyright terms: Public domain W3C validator