Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Structured version   Visualization version   GIF version

Theorem bnj1309 30344
Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
Assertion
Ref Expression
bnj1309 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑑   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑤,𝑑)   𝐵(𝑥,𝑤,𝑑)   𝑅(𝑥,𝑤,𝑑)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 hbra1 2926 . . . 4 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 → ∀𝑥𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
32bnj1352 30152 . . 3 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) → ∀𝑥(𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
43hbab 2601 . 2 (𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} → ∀𝑥 𝑤 ∈ {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)})
51, 4hbxfreq 2717 1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wss 3540   predc-bnj14 30007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ral 2901
This theorem is referenced by:  bnj1311  30346  bnj1373  30352  bnj1498  30383  bnj1525  30391  bnj1523  30393
  Copyright terms: Public domain W3C validator