Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Structured version   Visualization version   GIF version

Theorem 2lnat 34088
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b 𝐵 = (Base‘𝐾)
2lnat.m = (meet‘𝐾)
2lnat.z 0 = (0.‘𝐾)
2lnat.a 𝐴 = (Atoms‘𝐾)
2lnat.n 𝑁 = (Lines‘𝐾)
2lnat.f 𝐹 = (pmap‘𝐾)
Assertion
Ref Expression
2lnat (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2lnat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp11 1084 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ HL)
2 hlatl 33665 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ AtLat)
4 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
51, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ Lat)
6 simp12 1085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋𝐵)
7 simp13 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌𝐵)
8 2lnat.b . . . . . 6 𝐵 = (Base‘𝐾)
9 2lnat.m . . . . . 6 = (meet‘𝐾)
108, 9latmcl 16875 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
115, 6, 7, 10syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐵)
12 simp3r 1083 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ≠ 0 )
13 eqid 2610 . . . . 5 (le‘𝐾) = (le‘𝐾)
14 2lnat.z . . . . 5 0 = (0.‘𝐾)
15 2lnat.a . . . . 5 𝐴 = (Atoms‘𝐾)
168, 13, 14, 15atlex 33621 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) ≠ 0 ) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
173, 11, 12, 16syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
18 simp13l 1169 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑌)
19 simp11 1084 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵))
20 simp12l 1167 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑋) ∈ 𝑁)
21 simp12r 1168 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐹𝑌) ∈ 𝑁)
22 2lnat.n . . . . . . . . . . 11 𝑁 = (Lines‘𝐾)
23 2lnat.f . . . . . . . . . . 11 𝐹 = (pmap‘𝐾)
248, 13, 22, 23lncmp 34087 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
2519, 20, 21, 24syl12anc 1316 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
26 simp111 1183 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ HL)
2726, 4syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Lat)
28 simp112 1184 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝐵)
29 simp113 1185 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌𝐵)
308, 13, 9latleeqm1 16902 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3127, 28, 29, 30syl3anc 1318 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3225, 31bitr3d 269 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 = 𝑌 ↔ (𝑋 𝑌) = 𝑋))
3332necon3bid 2826 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
3418, 33mpbid 221 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ≠ 𝑋)
35 simp3 1056 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌))
368, 13, 9latmle1 16899 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
3727, 28, 29, 36syl3anc 1318 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌)(le‘𝐾)𝑋)
38 hlpos 33670 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3926, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Poset)
408, 15atbase 33594 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
41403ad2ant2 1076 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐵)
4227, 28, 29, 10syl3anc 1318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝐵)
43 simp2 1055 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐴)
448, 13, 27, 41, 42, 28, 35, 37lattrd 16881 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)𝑋)
45 eqid 2610 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
468, 13, 45, 15, 22, 23lncvrat 34086 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) ∧ ((𝐹𝑋) ∈ 𝑁𝑝(le‘𝐾)𝑋)) → 𝑝( ⋖ ‘𝐾)𝑋)
4726, 28, 43, 20, 44, 46syl32anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
488, 13, 45cvrnbtwn4 33584 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
4939, 41, 28, 42, 47, 48syl131anc 1331 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5035, 37, 49mpbi2and 958 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋))
51 neor 2873 . . . . . . . 8 ((𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋) ↔ (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5250, 51sylib 207 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5352necon1d 2804 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑋 𝑌) ≠ 𝑋𝑝 = (𝑋 𝑌)))
5434, 53mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 = (𝑋 𝑌))
55543exp 1256 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑝𝐴 → (𝑝(le‘𝐾)(𝑋 𝑌) → 𝑝 = (𝑋 𝑌))))
5655reximdvai 2998 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌)))
5717, 56mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
58 risset 3044 . 2 ((𝑋 𝑌) ∈ 𝐴 ↔ ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
5957, 58sylibr 223 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝐹𝑋) ∈ 𝑁 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  Posetcpo 16763  meetcmee 16768  0.cp0 16860  Latclat 16868  ccvr 33567  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  Linesclines 33798  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lines 33805  df-pmap 33808
This theorem is referenced by:  cdleme3h  34540  cdleme7ga  34553
  Copyright terms: Public domain W3C validator