Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn4 Structured version   Visualization version   GIF version

Theorem cvrnbtwn4 33584
 Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 28532 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))

Proof of Theorem cvrnbtwn4
StepHypRef Expression
1 cvrle.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2610 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 33576 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌))
5 iman 439 . . . . 5 (((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
6 cvrle.l . . . . . . . . . 10 = (le‘𝐾)
76, 2pltval 16783 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
873adant3r2 1267 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
96, 2pltval 16783 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
1093com23 1263 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
11103adant3r1 1266 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
128, 11anbi12d 743 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌))))
13 neanior 2874 . . . . . . . . 9 ((𝑋𝑍𝑍𝑌) ↔ ¬ (𝑋 = 𝑍𝑍 = 𝑌))
1413anbi2i 726 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
15 an4 861 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
1614, 15bitr3i 265 . . . . . . 7 (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
1712, 16syl6rbbr 278 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
1817notbid 307 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
195, 18syl5rbb 272 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
20193adant3 1074 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
214, 20mpbid 221 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)))
221, 6posref 16774 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑍𝐵) → 𝑍 𝑍)
23223ad2antr3 1221 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 𝑍)
24233adant3 1074 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑍 𝑍)
25 breq1 4586 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑍𝑍 𝑍))
2624, 25syl5ibrcom 236 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
271, 6, 3cvrle 33583 . . . . . . . 8 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
2827ex 449 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 𝑌))
29283adant3r3 1268 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 𝑌))
30293impia 1253 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
31 breq2 4587 . . . . 5 (𝑍 = 𝑌 → (𝑋 𝑍𝑋 𝑌))
3230, 31syl5ibrcom 236 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 𝑍))
3326, 32jaod 394 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑋 𝑍))
34 breq1 4586 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑌𝑍 𝑌))
3530, 34syl5ibcom 234 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 𝑌))
36 breq2 4587 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑍𝑍 𝑌))
3724, 36syl5ibcom 234 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3835, 37jaod 394 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑍 𝑌))
3933, 38jcad 554 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → (𝑋 𝑍𝑍 𝑌)))
4021, 39impbid 201 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764   ⋖ ccvr 33567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-preset 16751  df-poset 16769  df-plt 16781  df-covers 33571 This theorem is referenced by:  cvrcmp  33588  leatb  33597  2llnmat  33828  2lnat  34088
 Copyright terms: Public domain W3C validator