Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Structured version   Unicode version

Theorem 2lnat 33428
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b  |-  B  =  ( Base `  K
)
2lnat.m  |-  ./\  =  ( meet `  K )
2lnat.z  |-  .0.  =  ( 0. `  K )
2lnat.a  |-  A  =  ( Atoms `  K )
2lnat.n  |-  N  =  ( Lines `  K )
2lnat.f  |-  F  =  ( pmap `  K
)
Assertion
Ref Expression
2lnat  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )

Proof of Theorem 2lnat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simp11 1018 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  HL )
2 hlatl 33005 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  AtLat )
4 hllat 33008 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  Lat )
6 simp12 1019 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  X  e.  B )
7 simp13 1020 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  Y  e.  B )
8 2lnat.b . . . . . 6  |-  B  =  ( Base `  K
)
9 2lnat.m . . . . . 6  |-  ./\  =  ( meet `  K )
108, 9latmcl 15222 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
115, 6, 7, 10syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  B )
12 simp3r 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  =/= 
.0.  )
13 eqid 2443 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
14 2lnat.z . . . . 5  |-  .0.  =  ( 0. `  K )
15 2lnat.a . . . . 5  |-  A  =  ( Atoms `  K )
168, 13, 14, 15atlex 32961 . . . 4  |-  ( ( K  e.  AtLat  /\  ( X  ./\  Y )  e.  B  /\  ( X 
./\  Y )  =/= 
.0.  )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
173, 11, 12, 16syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
18 simp13l 1103 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  =/=  Y )
19 simp11 1018 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) )
20 simp12l 1101 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  X )  e.  N
)
21 simp12r 1102 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  Y )  e.  N
)
22 2lnat.n . . . . . . . . . . 11  |-  N  =  ( Lines `  K )
23 2lnat.f . . . . . . . . . . 11  |-  F  =  ( pmap `  K
)
248, 13, 22, 23lncmp 33427 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N ) )  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
2519, 20, 21, 24syl12anc 1216 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
26 simp111 1117 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  HL )
2726, 4syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Lat )
28 simp112 1118 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  e.  B )
29 simp113 1119 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  Y  e.  B )
308, 13, 9latleeqm1 15249 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le
`  K ) Y  <-> 
( X  ./\  Y
)  =  X ) )
3127, 28, 29, 30syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  ( X  ./\ 
Y )  =  X ) )
3225, 31bitr3d 255 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =  Y  <->  ( X  ./\  Y )  =  X ) )
3332necon3bid 2643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =/=  Y  <->  ( X  ./\  Y )  =/=  X ) )
3418, 33mpbid 210 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  =/=  X
)
35 simp3 990 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) ( X  ./\  Y )
)
368, 13, 9latmle1 15246 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
3727, 28, 29, 36syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y ) ( le
`  K ) X )
38 hlpos 33010 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
3926, 38syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Poset
)
408, 15atbase 32934 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  B )
41403ad2ant2 1010 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  B )
4227, 28, 29, 10syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  e.  B
)
43 simp2 989 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  A )
448, 13, 27, 41, 42, 28, 35, 37lattrd 15228 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) X )
45 eqid 2443 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
468, 13, 45, 15, 22, 23lncvrat 33426 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  /\  ( ( F `  X )  e.  N  /\  p ( le `  K ) X ) )  ->  p (  <o  `  K ) X )
4726, 28, 43, 20, 44, 46syl32anc 1226 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p (  <o  `  K ) X )
488, 13, 45cvrnbtwn4 32924 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  ( X  ./\  Y )  e.  B )  /\  p (  <o  `  K
) X )  -> 
( ( p ( le `  K ) ( X  ./\  Y
)  /\  ( X  ./\ 
Y ) ( le
`  K ) X )  <->  ( p  =  ( X  ./\  Y
)  \/  ( X 
./\  Y )  =  X ) ) )
4939, 41, 28, 42, 47, 48syl131anc 1231 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( (
p ( le `  K ) ( X 
./\  Y )  /\  ( X  ./\  Y ) ( le `  K
) X )  <->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) ) )
5035, 37, 49mpbi2and 912 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) )
51 neor 2696 . . . . . . . 8  |-  ( ( p  =  ( X 
./\  Y )  \/  ( X  ./\  Y
)  =  X )  <-> 
( p  =/=  ( X  ./\  Y )  -> 
( X  ./\  Y
)  =  X ) )
5250, 51sylib 196 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =/=  ( X  ./\  Y
)  ->  ( X  ./\ 
Y )  =  X ) )
5352necon1d 2680 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( ( X  ./\  Y )  =/= 
X  ->  p  =  ( X  ./\  Y ) ) )
5434, 53mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  =  ( X  ./\  Y ) )
55543exp 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  (
p  e.  A  -> 
( p ( le
`  K ) ( X  ./\  Y )  ->  p  =  ( X 
./\  Y ) ) ) )
5655reximdvai 2826 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( E. p  e.  A  p ( le `  K ) ( X 
./\  Y )  ->  E. p  e.  A  p  =  ( X  ./\ 
Y ) ) )
5717, 56mpd 15 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p  =  ( X  ./\  Y ) )
58 risset 2763 . 2  |-  ( ( X  ./\  Y )  e.  A  <->  E. p  e.  A  p  =  ( X  ./\ 
Y ) )
5957, 58sylibr 212 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   lecple 14245   Posetcpo 15110   meetcmee 15115   0.cp0 15207   Latclat 15215    <o ccvr 32907   Atomscatm 32908   AtLatcal 32909   HLchlt 32995   Linesclines 33138   pmapcpmap 33141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-lines 33145  df-pmap 33148
This theorem is referenced by:  cdleme3h  33879  cdleme7ga  33892
  Copyright terms: Public domain W3C validator