Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncmp Structured version   Visualization version   GIF version

Theorem lncmp 34087
Description: If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
lncmp.b 𝐵 = (Base‘𝐾)
lncmp.l = (le‘𝐾)
lncmp.n 𝑁 = (Lines‘𝐾)
lncmp.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncmp (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lncmp
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 796 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (𝑀𝑋) ∈ 𝑁)
2 simpll1 1093 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpll2 1094 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 lncmp.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 eqid 2610 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
6 eqid 2610 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
7 lncmp.n . . . . . . 7 𝑁 = (Lines‘𝐾)
8 lncmp.m . . . . . . 7 𝑀 = (pmap‘𝐾)
94, 5, 6, 7, 8isline3 34080 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
102, 3, 9syl2anc 691 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
111, 10mpbid 221 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))
12 simp3rr 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = (𝑝(join‘𝐾)𝑞))
13 simp1l1 1147 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ HL)
14 simp1l3 1149 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌𝐵)
15 simp1rr 1120 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → (𝑀𝑌) ∈ 𝑁)
16 simp3ll 1125 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 ∈ (Atoms‘𝐾))
17 simp3lr 1126 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 ∈ (Atoms‘𝐾))
18 simp3rl 1127 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝑞)
19 lncmp.l . . . . . . . . . 10 = (le‘𝐾)
20 hllat 33668 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2113, 20syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝐾 ∈ Lat)
224, 6atbase 33594 . . . . . . . . . . 11 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
2316, 22syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝𝐵)
24 simp1l2 1148 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋𝐵)
2519, 5, 6hlatlej1 33679 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑝 (𝑝(join‘𝐾)𝑞))
2613, 16, 17, 25syl3anc 1318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 (𝑝(join‘𝐾)𝑞))
2726, 12breqtrrd 4611 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑋)
28 simp2 1055 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 𝑌)
294, 19, 21, 23, 24, 14, 27, 28lattrd 16881 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑝 𝑌)
304, 6atbase 33594 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
3117, 30syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞𝐵)
3219, 5, 6hlatlej2 33680 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → 𝑞 (𝑝(join‘𝐾)𝑞))
3313, 16, 17, 32syl3anc 1318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 (𝑝(join‘𝐾)𝑞))
3433, 12breqtrrd 4611 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑋)
354, 19, 21, 31, 24, 14, 34, 28lattrd 16881 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑞 𝑌)
364, 19, 5, 6, 7, 8lneq2at 34082 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑌𝐵 ∧ (𝑀𝑌) ∈ 𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾) ∧ 𝑝𝑞) ∧ (𝑝 𝑌𝑞 𝑌)) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3713, 14, 15, 16, 17, 18, 29, 35, 36syl332anc 1349 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
3812, 37eqtr4d 2647 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌 ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)))) → 𝑋 = 𝑌)
39383expia 1259 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))) → 𝑋 = 𝑌))
4039expd 451 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌)))
4140rexlimdvv 3019 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞)) → 𝑋 = 𝑌))
4211, 41mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
4342ex 449 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
44 simpl1 1057 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ HL)
4544, 20syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝐾 ∈ Lat)
46 simpl2 1058 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋𝐵)
474, 19latref 16876 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
4845, 46, 47syl2anc 691 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → 𝑋 𝑋)
49 breq2 4587 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
5048, 49syl5ibcom 234 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 = 𝑌𝑋 𝑌))
5143, 50impbid 201 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑀𝑋) ∈ 𝑁 ∧ (𝑀𝑌) ∈ 𝑁)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  Linesclines 33798  pmapcpmap 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lines 33805  df-pmap 33808
This theorem is referenced by:  2lnat  34088
  Copyright terms: Public domain W3C validator