Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1loopgrvd2 Structured version   Visualization version   GIF version

Theorem 1loopgrvd2 40718
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrvd2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem 1loopgrvd2
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 40715 . . . 4 (𝜑𝐺 ∈ USPGraph )
6 uspgrushgr 40405 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph )
75, 6syl 17 . . 3 (𝜑𝐺 ∈ USHGraph )
83, 1eleqtrrd 2691 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
9 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2610 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
11 eqid 2610 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
129, 10, 11vtxdushgrfvedg 40705 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
137, 8, 12syl2anc 691 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
14 snex 4835 . . . . . . . 8 {𝑁} ∈ V
15 sneq 4135 . . . . . . . . 9 (𝑎 = {𝑁} → {𝑎} = {{𝑁}})
1615eqeq2d 2620 . . . . . . . 8 (𝑎 = {𝑁} → ({{𝑁}} = {𝑎} ↔ {{𝑁}} = {{𝑁}}))
17 eqid 2610 . . . . . . . 8 {{𝑁}} = {{𝑁}}
1814, 16, 17ceqsexv2d 3216 . . . . . . 7 𝑎{{𝑁}} = {𝑎}
1918a1i 11 . . . . . 6 (𝜑 → ∃𝑎{{𝑁}} = {𝑎})
20 snidg 4153 . . . . . . . . . 10 (𝑁𝑉𝑁 ∈ {𝑁})
213, 20syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ {𝑁})
2221iftrued 4044 . . . . . . . 8 (𝜑 → if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {{𝑁}})
2322eqeq1d 2612 . . . . . . 7 (𝜑 → (if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎}))
2423exbidv 1837 . . . . . 6 (𝜑 → (∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎}))
2519, 24mpbird 246 . . . . 5 (𝜑 → ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎})
261, 2, 3, 41loopgredg 40716 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2726rabeqdv 3167 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒})
28 eleq2 2677 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑁𝑒𝑁 ∈ {𝑁}))
2928rabsnif 4202 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅)
3027, 29syl6eq 2660 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅))
3130eqeq1d 2612 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3231exbidv 1837 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3325, 32mpbird 246 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
34 fvex 6113 . . . . . 6 (Edg‘𝐺) ∈ V
3534rabex 4740 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V
36 hash1snb 13068 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V → ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎}))
3735, 36ax-mp 5 . . . 4 ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
3833, 37sylibr 223 . . 3 (𝜑 → (#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1)
39 eqid 2610 . . . . . . . . 9 {𝑁} = {𝑁}
4039iftruei 4043 . . . . . . . 8 if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {{𝑁}}
4140eqeq1i 2615 . . . . . . 7 (if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎})
4241exbii 1764 . . . . . 6 (∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎})
4319, 42sylibr 223 . . . . 5 (𝜑 → ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎})
4426rabeqdv 3167 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}})
45 eqeq1 2614 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑒 = {𝑁} ↔ {𝑁} = {𝑁}))
4645rabsnif 4202 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅)
4744, 46syl6eq 2660 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅))
4847eqeq1d 2612 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
4948exbidv 1837 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
5043, 49mpbird 246 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5134rabex 4740 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V
52 hash1snb 13068 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V → ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎}))
5351, 52ax-mp 5 . . . 4 ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5450, 53sylibr 223 . . 3 (𝜑 → (#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1)
5538, 54oveq12d 6567 . 2 (𝜑 → ((#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (#‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})) = (1 +𝑒 1))
56 1re 9918 . . . . 5 1 ∈ ℝ
57 rexadd 11937 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
5856, 56, 57mp2an 704 . . . 4 (1 +𝑒 1) = (1 + 1)
59 1p1e2 11011 . . . 4 (1 + 1) = 2
6058, 59eqtri 2632 . . 3 (1 +𝑒 1) = 2
6160a1i 11 . 2 (𝜑 → (1 +𝑒 1) = 2)
6213, 55, 613eqtrd 2648 1 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wex 1695  wcel 1977  {crab 2900  Vcvv 3173  c0 3874  ifcif 4036  {csn 4125  cop 4131  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818  2c2 10947   +𝑒 cxad 11820  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674   USHGraph cushgr 25723  Edgcedga 25792   USPGraph cuspgr 40378  VtxDegcvtxdg 40681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-uhgr 25724  df-ushgr 25725  df-edga 25793  df-uspgr 40380  df-vtxdg 40682
This theorem is referenced by:  uspgrloopvd2  40736  eupth2lem3lem3  41398
  Copyright terms: Public domain W3C validator