Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkon Structured version   Visualization version   GIF version

Theorem wlkon 26061
 Description: The set of walks between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 12-Dec-2017.)
Assertion
Ref Expression
wlkon (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 WalkOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
Distinct variable groups:   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝   𝑓,𝑋,𝑝   𝑓,𝑌,𝑝   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝

Proof of Theorem wlkon
Dummy variables 𝑎 𝑏 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . . . 5 (𝑉𝑋𝑉 ∈ V)
21ad2antrr 758 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝑉 ∈ V)
3 elex 3185 . . . . . 6 (𝐸𝑌𝐸 ∈ V)
43adantl 481 . . . . 5 ((𝑉𝑋𝐸𝑌) → 𝐸 ∈ V)
54adantr 480 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐸 ∈ V)
6 id 22 . . . . . . 7 (𝑉𝑋𝑉𝑋)
76ancli 572 . . . . . 6 (𝑉𝑋 → (𝑉𝑋𝑉𝑋))
87ad2antrr 758 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑉𝑋𝑉𝑋))
9 mpt2exga 7135 . . . . 5 ((𝑉𝑋𝑉𝑋) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) ∈ V)
108, 9syl 17 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) ∈ V)
11 simpl 472 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
12 oveq12 6558 . . . . . . . . 9 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣 Walks 𝑒) = (𝑉 Walks 𝐸))
1312breqd 4594 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑓(𝑣 Walks 𝑒)𝑝𝑓(𝑉 Walks 𝐸)𝑝))
14133anbi1d 1395 . . . . . . 7 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
1514opabbidv 4648 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})
1611, 11, 15mpt2eq123dv 6615 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
17 df-wlkon 26042 . . . . 5 WalkOn = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
1816, 17ovmpt2ga 6688 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) ∈ V) → (𝑉 WalkOn 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
192, 5, 10, 18syl3anc 1318 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑉 WalkOn 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
2019oveqd 6566 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 WalkOn 𝐸)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})𝐵))
21 simpl 472 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
2221adantl 481 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
23 simprr 792 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
24 3anass 1035 . . . . . . 7 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
2524a1i 11 . . . . . 6 ((𝑉𝑋𝐸𝑌) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))))
2625opabbidv 4648 . . . . 5 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))})
27 id 22 . . . . . . 7 (𝑓(𝑉 Walks 𝐸)𝑝𝑓(𝑉 Walks 𝐸)𝑝)
2827wlkres 26050 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))} ∈ V)
291, 3, 28syl2an 493 . . . . 5 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))} ∈ V)
3026, 29eqeltrd 2688 . . . 4 ((𝑉𝑋𝐸𝑌) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} ∈ V)
3130adantr 480 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} ∈ V)
32 eqeq2 2621 . . . . . . 7 (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴))
3332adantr 480 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴))
34 eqeq2 2621 . . . . . . 7 (𝑏 = 𝐵 → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵))
3534adantl 481 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵))
3633, 353anbi23d 1394 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
3736opabbidv 4648 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
38 eqid 2610 . . . 4 (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})
3937, 38ovmpt2ga 6688 . . 3 ((𝐴𝑉𝐵𝑉 ∧ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} ∈ V) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
4022, 23, 31, 39syl3anc 1318 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
4120, 40eqtrd 2644 1 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 WalkOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583  {copab 4642  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815  #chash 12979   Walks cwalk 26026   WalkOn cwlkon 26030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-wlkon 26042 This theorem is referenced by:  iswlkon  26062  wlkonprop  26063
 Copyright terms: Public domain W3C validator