Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswlkon | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) |
Ref | Expression |
---|---|
iswlkon | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkon 26061 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑉 WalkOn 𝐸)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}) | |
2 | 1 | breqd 4594 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}𝑃)) |
3 | 2 | 3adant2 1073 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}𝑃)) |
4 | breq12 4588 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(𝑉 Walks 𝐸)𝑝 ↔ 𝐹(𝑉 Walks 𝐸)𝑃)) | |
5 | fveq1 6102 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
6 | 5 | eqeq1d 2612 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = 𝐴 ↔ (𝑃‘0) = 𝐴)) |
8 | simpr 476 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
9 | fveq2 6103 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹)) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (#‘𝑓) = (#‘𝐹)) |
11 | 8, 10 | fveq12d 6109 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(#‘𝑓)) = (𝑃‘(#‘𝐹))) |
12 | 11 | eqeq1d 2612 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘(#‘𝑓)) = 𝐵 ↔ (𝑃‘(#‘𝐹)) = 𝐵)) |
13 | 4, 7, 12 | 3anbi123d 1391 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))) |
14 | eqid 2610 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} | |
15 | 13, 14 | brabga 4914 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))) |
16 | 15 | 3ad2ant2 1076 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))) |
17 | 3, 16 | bitrd 267 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 {copab 4642 ‘cfv 5804 (class class class)co 6549 0cc0 9815 #chash 12979 Walks cwalk 26026 WalkOn cwlkon 26030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-wlk 26036 df-wlkon 26042 |
This theorem is referenced by: wlkonprop 26063 wlkonwlk 26065 0wlkon 26077 isspthonpth 26114 spthonepeq 26117 1pthon 26121 2pthon 26132 usgra2adedgwlkon 26143 usgra2adedgwlkonALT 26144 el2wlkonot 26396 el2spthonot 26397 |
Copyright terms: Public domain | W3C validator |