Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvol2 | Structured version Visualization version GIF version |
Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvol2.f | ⊢ Ⅎ𝑓𝑌 |
vonvol2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvol2.x | ⊢ (𝜑 → 𝑋 ∈ dom (voln‘{𝐴})) |
vonvol2.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvol2 | ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvol2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vonvol2.f | . . . . . . 7 ⊢ Ⅎ𝑓𝑌 | |
3 | snfi 7923 | . . . . . . . . 9 ⊢ {𝐴} ∈ Fin | |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ∈ Fin) |
5 | vonvol2.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ dom (voln‘{𝐴})) | |
6 | 4, 5 | vonmblss2 39532 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
7 | vonvol2.y | . . . . . . 7 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
8 | 2, 1, 6, 7 | ssmapsn 38403 | . . . . . 6 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
9 | 8 | eqcomd 2616 | . . . . 5 ⊢ (𝜑 → (𝑌 ↑𝑚 {𝐴}) = 𝑋) |
10 | 9, 5 | eqeltrd 2688 | . . . 4 ⊢ (𝜑 → (𝑌 ↑𝑚 {𝐴}) ∈ dom (voln‘{𝐴})) |
11 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
12 | simpr 476 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) | |
13 | 11, 12 | sseldd 3569 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴})) |
14 | elmapi 7765 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
15 | frn 5966 | . . . . . . . . 9 ⊢ (𝑓:{𝐴}⟶ℝ → ran 𝑓 ⊆ ℝ) | |
16 | 13, 14, 15 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
17 | 16 | ralrimiva 2949 | . . . . . . 7 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
18 | iunss 4497 | . . . . . . 7 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
19 | 17, 18 | sylibr 223 | . . . . . 6 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
20 | 7, 19 | syl5eqss 3612 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
21 | 1, 20 | vonvolmbl 39551 | . . . 4 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝑌 ∈ dom vol)) |
22 | 10, 21 | mpbid 221 | . . 3 ⊢ (𝜑 → 𝑌 ∈ dom vol) |
23 | 1, 22 | vonvol 39552 | . 2 ⊢ (𝜑 → ((voln‘{𝐴})‘(𝑌 ↑𝑚 {𝐴})) = (vol‘𝑌)) |
24 | 9 | eqcomd 2616 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
25 | 24 | fveq2d 6107 | . 2 ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = ((voln‘{𝐴})‘(𝑌 ↑𝑚 {𝐴}))) |
26 | eqidd 2611 | . 2 ⊢ (𝜑 → (vol‘𝑌) = (vol‘𝑌)) | |
27 | 23, 25, 26 | 3eqtr4d 2654 | 1 ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Ⅎwnfc 2738 ∀wral 2896 ⊆ wss 3540 {csn 4125 ∪ ciun 4455 dom cdm 5038 ran crn 5039 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 ℝcr 9814 volcvol 23039 volncvoln 39428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cc 9140 ax-ac2 9168 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-disj 4554 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-acn 8651 df-ac 8822 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 df-sum 14265 df-prod 14475 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-rest 15906 df-0g 15925 df-topgen 15927 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-subg 17414 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-cmp 21000 df-ovol 23040 df-vol 23041 df-sumge0 39256 df-ome 39380 df-caragen 39382 df-ovoln 39427 df-voln 39429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |