Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2v2evd2 Structured version   Visualization version   GIF version

Theorem umgr2v2evd2 40743
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evd2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)

Proof of Theorem umgr2v2evd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2e 40741 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph )
31umgr2v2evtxel 40738 . . . . 5 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
433adant3 1074 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
54adantr 480 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐴 ∈ (Vtx‘𝐺))
6 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
8 eqid 2610 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
9 eqid 2610 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
106, 7, 8, 9vtxdumgrval 40701 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐴) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
112, 5, 10syl2anc 691 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}))
121umgr2v2eiedg 40739 . . . . . . . 8 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
1312dmeqd 5248 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
14 prex 4836 . . . . . . . 8 {𝐴, 𝐵} ∈ V
1514, 14dmprop 5528 . . . . . . 7 dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {0, 1}
1613, 15syl6eq 2660 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → dom (iEdg‘𝐺) = {0, 1})
1712fveq1d 6105 . . . . . . 7 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ((iEdg‘𝐺)‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
1817eleq2d 2673 . . . . . 6 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)))
1916, 18rabeqbidv 3168 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
2019fveq2d 6107 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}))
21 prid1g 4239 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
22 0ne1 10965 . . . . . . . . . . . 12 0 ≠ 1
23 c0ex 9913 . . . . . . . . . . . . 13 0 ∈ V
2423, 14fvpr1 6361 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵})
2522, 24ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) = {𝐴, 𝐵}
2621, 25syl6eleqr 2699 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
27 1ex 9914 . . . . . . . . . . . . 13 1 ∈ V
2827, 14fvpr2 6362 . . . . . . . . . . . 12 (0 ≠ 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵})
2922, 28ax-mp 5 . . . . . . . . . . 11 ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1) = {𝐴, 𝐵}
3021, 29syl6eleqr 2699 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
31 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 0 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0))
3231eleq2d 2673 . . . . . . . . . . 11 (𝑥 = 0 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0)))
33 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 1 → ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) = ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1))
3433eleq2d 2673 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3523, 27, 32, 34ralpr 4185 . . . . . . . . . 10 (∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥) ↔ (𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘0) ∧ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘1)))
3626, 30, 35sylanbrc 695 . . . . . . . . 9 (𝐴𝑉 → ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
37 rabid2 3096 . . . . . . . . 9 ({0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} ↔ ∀𝑥 ∈ {0, 1}𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥))
3836, 37sylibr 223 . . . . . . . 8 (𝐴𝑉 → {0, 1} = {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)})
3938eqcomd 2616 . . . . . . 7 (𝐴𝑉 → {𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)} = {0, 1})
4039fveq2d 6107 . . . . . 6 (𝐴𝑉 → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = (#‘{0, 1}))
41 prhash2ex 13048 . . . . . 6 (#‘{0, 1}) = 2
4240, 41syl6eq 2660 . . . . 5 (𝐴𝑉 → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
43423ad2ant2 1076 . . . 4 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ {0, 1} ∣ 𝐴 ∈ ({⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}‘𝑥)}) = 2)
4420, 43eqtrd 2644 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4544adantr 480 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐴 ∈ ((iEdg‘𝐺)‘𝑥)}) = 2)
4611, 45eqtrd 2644 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((VtxDeg‘𝐺)‘𝐴) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  {cpr 4127  cop 4131  dom cdm 5038  cfv 5804  0cc0 9815  1c1 9816  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674   UMGraph cumgr 25748  VtxDegcvtxdg 40681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-vtx 25675  df-iedg 25676  df-upgr 25749  df-umgr 25750  df-vtxdg 40682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator