Proof of Theorem tmsxpsval
Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . 3
⊢
((toMetSp‘𝑀)
×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s
(toMetSp‘𝑁)) |
2 | | eqid 2610 |
. . 3
⊢
(Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀)) |
3 | | eqid 2610 |
. . 3
⊢
(Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁)) |
4 | | tmsxps.1 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
5 | | eqid 2610 |
. . . . 5
⊢
(toMetSp‘𝑀) =
(toMetSp‘𝑀) |
6 | 5 | tmsxms 22101 |
. . . 4
⊢ (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈
∞MetSp) |
7 | 4, 6 | syl 17 |
. . 3
⊢ (𝜑 → (toMetSp‘𝑀) ∈
∞MetSp) |
8 | | tmsxps.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
9 | | eqid 2610 |
. . . . 5
⊢
(toMetSp‘𝑁) =
(toMetSp‘𝑁) |
10 | 9 | tmsxms 22101 |
. . . 4
⊢ (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈
∞MetSp) |
11 | 8, 10 | syl 17 |
. . 3
⊢ (𝜑 → (toMetSp‘𝑁) ∈
∞MetSp) |
12 | | tmsxps.p |
. . 3
⊢ 𝑃 =
(dist‘((toMetSp‘𝑀) ×s
(toMetSp‘𝑁))) |
13 | | eqid 2610 |
. . 3
⊢
((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) ×
(Base‘(toMetSp‘𝑀)))) = ((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) |
14 | | eqid 2610 |
. . 3
⊢
((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) ×
(Base‘(toMetSp‘𝑁)))) = ((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) |
15 | 5 | tmsds 22099 |
. . . . . 6
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝑀 = (dist‘(toMetSp‘𝑀))) |
16 | 4, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 = (dist‘(toMetSp‘𝑀))) |
17 | 5 | tmsbas 22098 |
. . . . . . 7
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀))) |
18 | 4, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = (Base‘(toMetSp‘𝑀))) |
19 | 18 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 → (∞Met‘𝑋) =
(∞Met‘(Base‘(toMetSp‘𝑀)))) |
20 | 4, 16, 19 | 3eltr3d 2702 |
. . . 4
⊢ (𝜑 →
(dist‘(toMetSp‘𝑀)) ∈
(∞Met‘(Base‘(toMetSp‘𝑀)))) |
21 | | ssid 3587 |
. . . 4
⊢
(Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀)) |
22 | | xmetres2 21976 |
. . . 4
⊢
(((dist‘(toMetSp‘𝑀)) ∈
(∞Met‘(Base‘(toMetSp‘𝑀))) ∧ (Base‘(toMetSp‘𝑀)) ⊆
(Base‘(toMetSp‘𝑀))) → ((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈
(∞Met‘(Base‘(toMetSp‘𝑀)))) |
23 | 20, 21, 22 | sylancl 693 |
. . 3
⊢ (𝜑 →
((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) ×
(Base‘(toMetSp‘𝑀)))) ∈
(∞Met‘(Base‘(toMetSp‘𝑀)))) |
24 | 9 | tmsds 22099 |
. . . . . 6
⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝑁 = (dist‘(toMetSp‘𝑁))) |
25 | 8, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 = (dist‘(toMetSp‘𝑁))) |
26 | 9 | tmsbas 22098 |
. . . . . . 7
⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁))) |
27 | 8, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑌 = (Base‘(toMetSp‘𝑁))) |
28 | 27 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 → (∞Met‘𝑌) =
(∞Met‘(Base‘(toMetSp‘𝑁)))) |
29 | 8, 25, 28 | 3eltr3d 2702 |
. . . 4
⊢ (𝜑 →
(dist‘(toMetSp‘𝑁)) ∈
(∞Met‘(Base‘(toMetSp‘𝑁)))) |
30 | | ssid 3587 |
. . . 4
⊢
(Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁)) |
31 | | xmetres2 21976 |
. . . 4
⊢
(((dist‘(toMetSp‘𝑁)) ∈
(∞Met‘(Base‘(toMetSp‘𝑁))) ∧ (Base‘(toMetSp‘𝑁)) ⊆
(Base‘(toMetSp‘𝑁))) → ((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈
(∞Met‘(Base‘(toMetSp‘𝑁)))) |
32 | 29, 30, 31 | sylancl 693 |
. . 3
⊢ (𝜑 →
((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) ×
(Base‘(toMetSp‘𝑁)))) ∈
(∞Met‘(Base‘(toMetSp‘𝑁)))) |
33 | | tmsxpsval.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
34 | 33, 18 | eleqtrd 2690 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (Base‘(toMetSp‘𝑀))) |
35 | | tmsxpsval.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
36 | 35, 27 | eleqtrd 2690 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (Base‘(toMetSp‘𝑁))) |
37 | | tmsxpsval.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
38 | 37, 18 | eleqtrd 2690 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (Base‘(toMetSp‘𝑀))) |
39 | | tmsxpsval.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑌) |
40 | 39, 27 | eleqtrd 2690 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (Base‘(toMetSp‘𝑁))) |
41 | 1, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40 | xpsdsval 21996 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, <
)) |
42 | 34, 38 | ovresd 6699 |
. . . . 5
⊢ (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶)) |
43 | 16 | oveqd 6566 |
. . . . 5
⊢ (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶)) |
44 | 42, 43 | eqtr4d 2647 |
. . . 4
⊢ (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴𝑀𝐶)) |
45 | 36, 40 | ovresd 6699 |
. . . . 5
⊢ (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷)) |
46 | 25 | oveqd 6566 |
. . . . 5
⊢ (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷)) |
47 | 45, 46 | eqtr4d 2647 |
. . . 4
⊢ (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵𝑁𝐷)) |
48 | 44, 47 | preq12d 4220 |
. . 3
⊢ (𝜑 → {(𝐴((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)} = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)}) |
49 | 48 | supeq1d 8235 |
. 2
⊢ (𝜑 → sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾
((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾
((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ) =
sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, <
)) |
50 | 41, 49 | eqtrd 2644 |
1
⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, <
)) |