MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqioo Structured version   Visualization version   GIF version

Theorem tgqioo 22411
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
Assertion
Ref Expression
tgqioo (topGen‘ran (,)) = 𝑄

Proof of Theorem tgqioo
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
2 imassrn 5396 . . 3 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
3 ioof 12142 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 5958 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 simpll 786 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*)
7 elioo1 12086 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦)))
87biimpa 500 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦))
98simp1d 1066 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*)
108simp2d 1067 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧)
11 qbtwnxr 11905 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑧 ∈ ℝ*𝑥 < 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
126, 9, 10, 11syl3anc 1318 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
13 simplr 788 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*)
148simp3d 1068 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦)
15 qbtwnxr 11905 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧 < 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
169, 13, 14, 15syl3anc 1318 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
17 reeanv 3086 . . . . . . . . . 10 (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)))
18 df-ov 6552 . . . . . . . . . . . . . 14 (𝑢(,)𝑣) = ((,)‘⟨𝑢, 𝑣⟩)
19 opelxpi 5072 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
20193ad2ant2 1076 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
21 ffun 5961 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
223, 21ax-mp 5 . . . . . . . . . . . . . . . 16 Fun (,)
23 qssre 11674 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ
24 ressxr 9962 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
2523, 24sstri 3577 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℝ*
26 xpss12 5148 . . . . . . . . . . . . . . . . . 18 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2725, 25, 26mp2an 704 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
283fdmi 5965 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
2927, 28sseqtr4i 3601 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ⊆ dom (,)
30 funfvima2 6397 . . . . . . . . . . . . . . . 16 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ))))
3122, 29, 30mp2an 704 . . . . . . . . . . . . . . 15 (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3220, 31syl 17 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3318, 32syl5eqel 2692 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)))
3493ad2ant1 1075 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ ℝ*)
35 simp3lr 1126 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 < 𝑧)
36 simp3rl 1127 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 < 𝑣)
37 simp2l 1080 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℚ)
3825, 37sseldi 3566 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℝ*)
39 simp2r 1081 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℚ)
4025, 39sseldi 3566 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℝ*)
41 elioo1 12086 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ*𝑣 ∈ ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4238, 40, 41syl2anc 691 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4334, 35, 36, 42mpbir3and 1238 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣))
4463ad2ant1 1075 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 ∈ ℝ*)
45 simp3ll 1125 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 < 𝑢)
46 xrltle 11858 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑢 ∈ ℝ*) → (𝑥 < 𝑢𝑥𝑢))
4744, 38, 46syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥 < 𝑢𝑥𝑢))
4845, 47mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥𝑢)
49 iooss1 12081 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑥𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
5044, 48, 49syl2anc 691 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
51133ad2ant1 1075 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑦 ∈ ℝ*)
52 simp3rr 1128 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 < 𝑦)
53 xrltle 11858 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑣 < 𝑦𝑣𝑦))
5440, 51, 53syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑣 < 𝑦𝑣𝑦))
5552, 54mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣𝑦)
56 iooss2 12082 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑣𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5751, 55, 56syl2anc 691 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5850, 57sstrd 3578 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))
59 eleq2 2677 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑧𝑤𝑧 ∈ (𝑢(,)𝑣)))
60 sseq1 3589 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))
6159, 60anbi12d 743 . . . . . . . . . . . . . 14 (𝑤 = (𝑢(,)𝑣) → ((𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))))
6261rspcev 3282 . . . . . . . . . . . . 13 (((𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)) ∧ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6333, 43, 58, 62syl12anc 1316 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
64633exp 1256 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))))
6564rexlimdvv 3019 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6617, 65syl5bir 232 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6712, 16, 66mp2and 711 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6867ralrimiva 2949 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
69 qtopbas 22373 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
70 eltg2b 20574 . . . . . . . 8 (((,) “ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
7169, 70ax-mp 5 . . . . . . 7 ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
7268, 71sylibr 223 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))))
7372rgen2a 2960 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))
74 ffnov 6662 . . . . 5 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))))
755, 73, 74mpbir2an 957 . . . 4 (,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ)))
76 frn 5966 . . . 4 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ))))
7775, 76ax-mp 5 . . 3 ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))
78 2basgen 20605 . . 3 ((((,) “ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))) → (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,)))
792, 77, 78mp2an 704 . 2 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,))
801, 79eqtr2i 2633 1 (topGen‘ran (,)) = 𝑄
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  𝒫 cpw 4108  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  *cxr 9952   < clt 9953  cle 9954  cq 11664  (,)cioo 12046  topGenctg 15921  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-topgen 15927  df-bases 20522
This theorem is referenced by:  re2ndc  22412  opnmblALT  23177  mbfimaopnlem  23228  tgqioo2  38621
  Copyright terms: Public domain W3C validator