MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqioo Structured version   Unicode version

Theorem tgqioo 20376
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1  |-  Q  =  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
Assertion
Ref Expression
tgqioo  |-  ( topGen ` 
ran  (,) )  =  Q

Proof of Theorem tgqioo
Dummy variables  v  u  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2  |-  Q  =  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
2 imassrn 5179 . . 3  |-  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,)
3 ioof 11386 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
4 ffn 5558 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
53, 4ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
6 simpll 753 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  x  e.  RR* )
7 elioo1 11339 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
z  e.  ( x (,) y )  <->  ( z  e.  RR*  /\  x  < 
z  /\  z  <  y ) ) )
87biimpa 484 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( z  e.  RR*  /\  x  < 
z  /\  z  <  y ) )
98simp1d 1000 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  z  e.  RR* )
108simp2d 1001 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  x  <  z )
11 qbtwnxr 11169 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  z  e.  RR*  /\  x  < 
z )  ->  E. u  e.  QQ  ( x  < 
u  /\  u  <  z ) )
126, 9, 10, 11syl3anc 1218 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. u  e.  QQ  ( x  < 
u  /\  u  <  z ) )
13 simplr 754 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  y  e.  RR* )
148simp3d 1002 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  z  <  y )
15 qbtwnxr 11169 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  y  e.  RR*  /\  z  < 
y )  ->  E. v  e.  QQ  ( z  < 
v  /\  v  <  y ) )
169, 13, 14, 15syl3anc 1218 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. v  e.  QQ  ( z  < 
v  /\  v  <  y ) )
17 reeanv 2887 . . . . . . . . . 10  |-  ( E. u  e.  QQ  E. v  e.  QQ  (
( x  <  u  /\  u  <  z )  /\  ( z  < 
v  /\  v  <  y ) )  <->  ( E. u  e.  QQ  (
x  <  u  /\  u  <  z )  /\  E. v  e.  QQ  (
z  <  v  /\  v  <  y ) ) )
18 df-ov 6093 . . . . . . . . . . . . . 14  |-  ( u (,) v )  =  ( (,) `  <. u ,  v >. )
19 opelxpi 4870 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  QQ  /\  v  e.  QQ )  -> 
<. u ,  v >.  e.  ( QQ  X.  QQ ) )
20193ad2ant2 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  <. u ,  v
>.  e.  ( QQ  X.  QQ ) )
21 ffun 5560 . . . . . . . . . . . . . . . . 17  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
223, 21ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  (,)
23 qssre 10962 . . . . . . . . . . . . . . . . . . 19  |-  QQ  C_  RR
24 ressxr 9426 . . . . . . . . . . . . . . . . . . 19  |-  RR  C_  RR*
2523, 24sstri 3364 . . . . . . . . . . . . . . . . . 18  |-  QQ  C_  RR*
26 xpss12 4944 . . . . . . . . . . . . . . . . . 18  |-  ( ( QQ  C_  RR*  /\  QQ  C_ 
RR* )  ->  ( QQ  X.  QQ )  C_  ( RR*  X.  RR* )
)
2725, 25, 26mp2an 672 . . . . . . . . . . . . . . . . 17  |-  ( QQ 
X.  QQ )  C_  ( RR*  X.  RR* )
283fdmi 5563 . . . . . . . . . . . . . . . . 17  |-  dom  (,)  =  ( RR*  X.  RR* )
2927, 28sseqtr4i 3388 . . . . . . . . . . . . . . . 16  |-  ( QQ 
X.  QQ )  C_  dom  (,)
30 funfvima2 5952 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  (,)  /\  ( QQ  X.  QQ )  C_  dom  (,) )  ->  ( <. u ,  v >.  e.  ( QQ  X.  QQ )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) ) )
3122, 29, 30mp2an 672 . . . . . . . . . . . . . . 15  |-  ( <.
u ,  v >.  e.  ( QQ  X.  QQ )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) )
3220, 31syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) )
3318, 32syl5eqel 2526 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  e.  ( (,) " ( QQ 
X.  QQ ) ) )
3493ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  e.  RR* )
35 simp3lr 1060 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  <  z
)
36 simp3rl 1061 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  <  v
)
37 simp2l 1014 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  e.  QQ )
3825, 37sseldi 3353 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  e.  RR* )
39 simp2r 1015 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  e.  QQ )
4025, 39sseldi 3353 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  e.  RR* )
41 elioo1 11339 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  RR*  /\  v  e.  RR* )  ->  (
z  e.  ( u (,) v )  <->  ( z  e.  RR*  /\  u  < 
z  /\  z  <  v ) ) )
4238, 40, 41syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( z  e.  ( u (,) v
)  <->  ( z  e. 
RR*  /\  u  <  z  /\  z  <  v
) ) )
4334, 35, 36, 42mpbir3and 1171 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  e.  ( u (,) v ) )
4463ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  e.  RR* )
45 simp3ll 1059 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  <  u
)
46 xrltle 11125 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  u  e.  RR* )  ->  (
x  <  u  ->  x  <_  u ) )
4744, 38, 46syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( x  < 
u  ->  x  <_  u ) )
4845, 47mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  <_  u
)
49 iooss1 11334 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  x  <_  u )  ->  (
u (,) v ) 
C_  ( x (,) v ) )
5044, 48, 49syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  C_  (
x (,) v ) )
51133ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  y  e.  RR* )
52 simp3rr 1062 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  <  y
)
53 xrltle 11125 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  RR*  /\  y  e.  RR* )  ->  (
v  <  y  ->  v  <_  y ) )
5440, 51, 53syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( v  < 
y  ->  v  <_  y ) )
5552, 54mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  <_  y
)
56 iooss2 11335 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  v  <_  y )  ->  (
x (,) v ) 
C_  ( x (,) y ) )
5751, 55, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( x (,) v )  C_  (
x (,) y ) )
5850, 57sstrd 3365 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  C_  (
x (,) y ) )
59 eleq2 2503 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u (,) v )  ->  (
z  e.  w  <->  z  e.  ( u (,) v
) ) )
60 sseq1 3376 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u (,) v )  ->  (
w  C_  ( x (,) y )  <->  ( u (,) v )  C_  (
x (,) y ) ) )
6159, 60anbi12d 710 . . . . . . . . . . . . . 14  |-  ( w  =  ( u (,) v )  ->  (
( z  e.  w  /\  w  C_  ( x (,) y ) )  <-> 
( z  e.  ( u (,) v )  /\  ( u (,) v )  C_  (
x (,) y ) ) ) )
6261rspcev 3072 . . . . . . . . . . . . 13  |-  ( ( ( u (,) v
)  e.  ( (,) " ( QQ  X.  QQ ) )  /\  (
z  e.  ( u (,) v )  /\  ( u (,) v
)  C_  ( x (,) y ) ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
6333, 43, 58, 62syl12anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
64633exp 1186 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( (
u  e.  QQ  /\  v  e.  QQ )  ->  ( ( ( x  <  u  /\  u  <  z )  /\  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) ) )
6564rexlimdvv 2846 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( E. u  e.  QQ  E. v  e.  QQ  ( ( x  <  u  /\  u  <  z )  /\  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
6617, 65syl5bir 218 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( ( E. u  e.  QQ  ( x  <  u  /\  u  <  z )  /\  E. v  e.  QQ  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
6712, 16, 66mp2and 679 . . . . . . . 8  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
6867ralrimiva 2798 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
69 qtopbas 20337 . . . . . . . 8  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
70 eltg2b 18563 . . . . . . . 8  |-  ( ( (,) " ( QQ 
X.  QQ ) )  e.  TopBases  ->  ( ( x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
7169, 70ax-mp 5 . . . . . . 7  |-  ( ( x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
7268, 71sylibr 212 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) )
7372rgen2a 2781 . . . . 5  |-  A. x  e.  RR*  A. y  e. 
RR*  ( x (,) y )  e.  (
topGen `  ( (,) " ( QQ  X.  QQ ) ) )
74 ffnov 6193 . . . . 5  |-  ( (,)
: ( RR*  X.  RR* )
--> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  ( (,)  Fn  ( RR*  X.  RR* )  /\  A. x  e.  RR*  A. y  e.  RR*  (
x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) ) )
755, 73, 74mpbir2an 911 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
76 frn 5564 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  ->  ran  (,)  C_  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) )
7775, 76ax-mp 5 . . 3  |-  ran  (,)  C_  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
78 2basgen 18594 . . 3  |-  ( ( ( (,) " ( QQ  X.  QQ ) ) 
C_  ran  (,)  /\  ran  (,)  C_  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) )  ->  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  =  ( topGen `  ran  (,) )
)
792, 77, 78mp2an 672 . 2  |-  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  =  ( topGen ` 
ran  (,) )
801, 79eqtr2i 2463 1  |-  ( topGen ` 
ran  (,) )  =  Q
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    C_ wss 3327   ~Pcpw 3859   <.cop 3882   class class class wbr 4291    X. cxp 4837   dom cdm 4839   ran crn 4840   "cima 4842   Fun wfun 5411    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6090   RRcr 9280   RR*cxr 9416    < clt 9417    <_ cle 9418   QQcq 10952   (,)cioo 11299   topGenctg 14375   TopBasesctb 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-n0 10579  df-z 10646  df-uz 10861  df-q 10953  df-ioo 11303  df-topgen 14381  df-bases 18504
This theorem is referenced by:  re2ndc  20377  opnmblALT  21082  mbfimaopnlem  21132
  Copyright terms: Public domain W3C validator