Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re2ndc | Structured version Visualization version GIF version |
Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
re2ndc | ⊢ (topGen‘ran (,)) ∈ 2nd𝜔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
2 | 1 | tgqioo 22411 | . 2 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
3 | qtopbas 22373 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ TopBases | |
4 | omelon 8426 | . . . . . 6 ⊢ ω ∈ On | |
5 | qnnen 14781 | . . . . . . . . 9 ⊢ ℚ ≈ ℕ | |
6 | xpen 8008 | . . . . . . . . 9 ⊢ ((ℚ ≈ ℕ ∧ ℚ ≈ ℕ) → (ℚ × ℚ) ≈ (ℕ × ℕ)) | |
7 | 5, 5, 6 | mp2an 704 | . . . . . . . 8 ⊢ (ℚ × ℚ) ≈ (ℕ × ℕ) |
8 | xpnnen 14778 | . . . . . . . 8 ⊢ (ℕ × ℕ) ≈ ℕ | |
9 | 7, 8 | entri 7896 | . . . . . . 7 ⊢ (ℚ × ℚ) ≈ ℕ |
10 | nnenom 12641 | . . . . . . 7 ⊢ ℕ ≈ ω | |
11 | 9, 10 | entr2i 7897 | . . . . . 6 ⊢ ω ≈ (ℚ × ℚ) |
12 | isnumi 8655 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ (ℚ × ℚ)) → (ℚ × ℚ) ∈ dom card) | |
13 | 4, 11, 12 | mp2an 704 | . . . . 5 ⊢ (ℚ × ℚ) ∈ dom card |
14 | ioof 12142 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffun 5961 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ Fun (,) |
17 | qssre 11674 | . . . . . . . . 9 ⊢ ℚ ⊆ ℝ | |
18 | ressxr 9962 | . . . . . . . . 9 ⊢ ℝ ⊆ ℝ* | |
19 | 17, 18 | sstri 3577 | . . . . . . . 8 ⊢ ℚ ⊆ ℝ* |
20 | xpss12 5148 | . . . . . . . 8 ⊢ ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*)) | |
21 | 19, 19, 20 | mp2an 704 | . . . . . . 7 ⊢ (ℚ × ℚ) ⊆ (ℝ* × ℝ*) |
22 | 14 | fdmi 5965 | . . . . . . 7 ⊢ dom (,) = (ℝ* × ℝ*) |
23 | 21, 22 | sseqtr4i 3601 | . . . . . 6 ⊢ (ℚ × ℚ) ⊆ dom (,) |
24 | fores 6037 | . . . . . 6 ⊢ ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ))) | |
25 | 16, 23, 24 | mp2an 704 | . . . . 5 ⊢ ((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) |
26 | fodomnum 8763 | . . . . 5 ⊢ ((ℚ × ℚ) ∈ dom card → (((,) ↾ (ℚ × ℚ)):(ℚ × ℚ)–onto→((,) “ (ℚ × ℚ)) → ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ))) | |
27 | 13, 25, 26 | mp2 9 | . . . 4 ⊢ ((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) |
28 | 9, 10 | entri 7896 | . . . 4 ⊢ (ℚ × ℚ) ≈ ω |
29 | domentr 7901 | . . . 4 ⊢ ((((,) “ (ℚ × ℚ)) ≼ (ℚ × ℚ) ∧ (ℚ × ℚ) ≈ ω) → ((,) “ (ℚ × ℚ)) ≼ ω) | |
30 | 27, 28, 29 | mp2an 704 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ≼ ω |
31 | 2ndci 21061 | . . 3 ⊢ ((((,) “ (ℚ × ℚ)) ∈ TopBases ∧ ((,) “ (ℚ × ℚ)) ≼ ω) → (topGen‘((,) “ (ℚ × ℚ))) ∈ 2nd𝜔) | |
32 | 3, 30, 31 | mp2an 704 | . 2 ⊢ (topGen‘((,) “ (ℚ × ℚ))) ∈ 2nd𝜔 |
33 | 2, 32 | eqeltri 2684 | 1 ⊢ (topGen‘ran (,)) ∈ 2nd𝜔 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ⊆ wss 3540 𝒫 cpw 4108 class class class wbr 4583 × cxp 5036 dom cdm 5038 ran crn 5039 ↾ cres 5040 “ cima 5041 Oncon0 5640 Fun wfun 5798 ⟶wf 5800 –onto→wfo 5802 ‘cfv 5804 ωcom 6957 ≈ cen 7838 ≼ cdom 7839 cardccrd 8644 ℝcr 9814 ℝ*cxr 9952 ℕcn 10897 ℚcq 11664 (,)cioo 12046 topGenctg 15921 TopBasesctb 20520 2nd𝜔c2ndc 21051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-omul 7452 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-acn 8651 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-ioo 12050 df-topgen 15927 df-bases 20522 df-2ndc 21053 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |