Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2basgen | Structured version Visualization version GIF version |
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
2basgen | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6113 | . . . . 5 ⊢ (topGen‘𝐵) ∈ V | |
2 | 1 | ssex 4730 | . . . 4 ⊢ (𝐶 ⊆ (topGen‘𝐵) → 𝐶 ∈ V) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ∈ V) |
4 | simpl 472 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ⊆ 𝐶) | |
5 | tgss 20583 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | |
6 | 3, 4, 5 | syl2anc 691 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
7 | simpr 476 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐶 ⊆ (topGen‘𝐵)) | |
8 | ssexg 4732 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐵 ∈ V) | |
9 | 2, 8 | sylan2 490 | . . . 4 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
10 | tgss3 20601 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) | |
11 | 3, 9, 10 | syl2anc 691 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → ((topGen‘𝐶) ⊆ (topGen‘𝐵) ↔ 𝐶 ⊆ (topGen‘𝐵))) |
12 | 7, 11 | mpbird 246 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐶) ⊆ (topGen‘𝐵)) |
13 | 6, 12 | eqssd 3585 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 ‘cfv 5804 topGenctg 15921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-topgen 15927 |
This theorem is referenced by: leordtval2 20826 2ndcsb 21062 txbasval 21219 prdsxmslem2 22144 tgioo 22407 tgqioo 22411 |
Copyright terms: Public domain | W3C validator |