MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3b Structured version   Visualization version   GIF version

Theorem swrdccat3b 13347
Description: A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
swrdccat3b ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))

Proof of Theorem swrdccat3b
StepHypRef Expression
1 simpl 472 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 476 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → 𝑀 ∈ (0...(𝐿 + (#‘𝐵))))
3 elfzubelfz 12224 . . . . 5 (𝑀 ∈ (0...(𝐿 + (#‘𝐵))) → (𝐿 + (#‘𝐵)) ∈ (0...(𝐿 + (#‘𝐵))))
43adantl 481 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 + (#‘𝐵)) ∈ (0...(𝐿 + (#‘𝐵))))
5 swrdccatin12.l . . . . . 6 𝐿 = (#‘𝐴)
65swrdccat3 13343 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (𝐿 + (#‘𝐵)) ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if((𝐿 + (#‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩))))))
76imp 444 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...(𝐿 + (#‘𝐵))) ∧ (𝐿 + (#‘𝐵)) ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if((𝐿 + (#‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩)))))
81, 2, 4, 7syl12anc 1316 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if((𝐿 + (#‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩)))))
95swrdccat3blem 13346 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ (𝐿 + (#‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩))
10 iftrue 4042 . . . . . 6 (𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩))
11103ad2ant3 1077 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩))
12 lencl 13179 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
1312nn0cnd 11230 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℂ)
14 lencl 13179 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
1514nn0cnd 11230 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℂ)
165eqcomi 2619 . . . . . . . . . . . . 13 (#‘𝐴) = 𝐿
1716eleq1i 2679 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℂ ↔ 𝐿 ∈ ℂ)
18 pncan2 10167 . . . . . . . . . . . 12 ((𝐿 ∈ ℂ ∧ (#‘𝐵) ∈ ℂ) → ((𝐿 + (#‘𝐵)) − 𝐿) = (#‘𝐵))
1917, 18sylanb 488 . . . . . . . . . . 11 (((#‘𝐴) ∈ ℂ ∧ (#‘𝐵) ∈ ℂ) → ((𝐿 + (#‘𝐵)) − 𝐿) = (#‘𝐵))
2013, 15, 19syl2an 493 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (#‘𝐵)) − 𝐿) = (#‘𝐵))
2120eqcomd 2616 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘𝐵) = ((𝐿 + (#‘𝐵)) − 𝐿))
2221adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → (#‘𝐵) = ((𝐿 + (#‘𝐵)) − 𝐿))
23223ad2ant1 1075 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿𝐿𝑀) → (#‘𝐵) = ((𝐿 + (#‘𝐵)) − 𝐿))
2423opeq2d 4347 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿𝐿𝑀) → ⟨(𝑀𝐿), (#‘𝐵)⟩ = ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩)
2524oveq2d 6565 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿𝐿𝑀) → (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩))
2611, 25eqtrd 2644 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩))
27 iffalse 4045 . . . . . 6 𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
28273ad2ant3 1077 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
2920adantr 480 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐿 + (#‘𝐵)) − 𝐿) = (#‘𝐵))
30293ad2ant1 1075 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐿 + (#‘𝐵)) − 𝐿) = (#‘𝐵))
3130opeq2d 4347 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩ = ⟨0, (#‘𝐵)⟩)
3231oveq2d 6565 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩) = (𝐵 substr ⟨0, (#‘𝐵)⟩))
33 swrdid 13280 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨0, (#‘𝐵)⟩) = 𝐵)
3433adantl 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 substr ⟨0, (#‘𝐵)⟩) = 𝐵)
3534adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐵 substr ⟨0, (#‘𝐵)⟩) = 𝐵)
36353ad2ant1 1075 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨0, (#‘𝐵)⟩) = 𝐵)
3732, 36eqtr2d 2645 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 = (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩))
3837oveq2d 6565 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩)))
3928, 38eqtrd 2644 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ (𝐿 + (#‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩)))
409, 26, 392if2 4086 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if((𝐿 + (#‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (#‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (#‘𝐵)) − 𝐿)⟩)))))
418, 40eqtr4d 2647 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)))
4241ex 449 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (#‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (#‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  ifcif 4036  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818  cle 9954  cmin 10145  ...cfz 12197  #chash 12979  Word cword 13146   ++ cconcat 13148   substr csubstr 13150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator