MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Structured version   Visualization version   GIF version

Theorem subrgmvr 19282
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
Assertion
Ref Expression
subrgmvr (𝜑𝑉 = (𝐼 mVar 𝐻))

Proof of Theorem subrgmvr
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
2 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
3 eqid 2610 . . . . . . 7 (1r𝑅) = (1r𝑅)
42, 3subrg1 18613 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
51, 4syl 17 . . . . 5 (𝜑 → (1r𝑅) = (1r𝐻))
6 eqid 2610 . . . . . . 7 (0g𝑅) = (0g𝑅)
72, 6subrg0 18610 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
81, 7syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
95, 8ifeq12d 4056 . . . 4 (𝜑 → if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) = if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))
109mpteq2dv 4673 . . 3 (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻))))
1110mpteq2dv 4673 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
12 subrgmvr.v . . 3 𝑉 = (𝐼 mVar 𝑅)
13 eqid 2610 . . 3 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 subrgmvr.i . . 3 (𝜑𝐼𝑊)
15 subrgrcl 18608 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
161, 15syl 17 . . 3 (𝜑𝑅 ∈ Ring)
1712, 13, 6, 3, 14, 16mvrfval 19241 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
18 eqid 2610 . . 3 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
19 eqid 2610 . . 3 (0g𝐻) = (0g𝐻)
20 eqid 2610 . . 3 (1r𝐻) = (1r𝐻)
21 ovex 6577 . . . . 5 (𝑅s 𝑇) ∈ V
222, 21eqeltri 2684 . . . 4 𝐻 ∈ V
2322a1i 11 . . 3 (𝜑𝐻 ∈ V)
2418, 13, 19, 20, 14, 23mvrfval 19241 . 2 (𝜑 → (𝐼 mVar 𝐻) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
2511, 17, 243eqtr4d 2654 1 (𝜑𝑉 = (𝐼 mVar 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  ifcif 4036  cmpt 4643  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  s cress 15696  0gc0g 15923  1rcur 18324  Ringcrg 18370  SubRingcsubrg 18599   mVar cmvr 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-mvr 19178
This theorem is referenced by:  subrgmvrf  19283  evlsvarsrng  19349  evlvar  19350  subrgvr1  19452  evls1var  19523
  Copyright terms: Public domain W3C validator