MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Structured version   Visualization version   GIF version

Theorem subgint 17441
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem subgint
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4434 . . . 4 (𝑆 ≠ ∅ → 𝑆 𝑆)
21adantl 481 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 𝑆)
3 ssel2 3563 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 747 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2610 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 17418 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 2949 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 4405 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 223 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3578 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2610 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 17425 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 17 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 2949 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 fvex 6113 . . . . 5 (0g𝐺) ∈ V
1716elint2 4417 . . . 4 ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
1815, 17sylibr 223 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (0g𝐺) ∈ 𝑆)
19 ne0i 3880 . . 3 ((0g𝐺) ∈ 𝑆 𝑆 ≠ ∅)
2018, 19syl 17 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
214adantlr 747 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
22 simprl 790 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
23 elinti 4420 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
2423imp 444 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
2522, 24sylan 487 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
26 simprr 792 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
27 elinti 4420 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
2827imp 444 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
2926, 28sylan 487 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
30 eqid 2610 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3130subgcl 17427 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3221, 25, 29, 31syl3anc 1318 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3332ralrimiva 2949 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
34 ovex 6577 . . . . . . . 8 (𝑥(+g𝐺)𝑦) ∈ V
3534elint2 4417 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3633, 35sylibr 223 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3736anassrs 678 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3837ralrimiva 2949 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
394adantlr 747 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
4024adantll 746 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
41 eqid 2610 . . . . . . . 8 (invg𝐺) = (invg𝐺)
4241subginvcl 17426 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4339, 40, 42syl2anc 691 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
4443ralrimiva 2949 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
45 fvex 6113 . . . . . 6 ((invg𝐺)‘𝑥) ∈ V
4645elint2 4417 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
4744, 46sylibr 223 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
4838, 47jca 553 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
4948ralrimiva 2949 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
50 ssn0 3928 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → (SubGrp‘𝐺) ≠ ∅)
51 n0 3890 . . . 4 ((SubGrp‘𝐺) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (SubGrp‘𝐺))
52 subgrcl 17422 . . . . 5 (𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5352exlimiv 1845 . . . 4 (∃𝑔 𝑔 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5451, 53sylbi 206 . . 3 ((SubGrp‘𝐺) ≠ ∅ → 𝐺 ∈ Grp)
555, 30, 41issubg2 17432 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5650, 54, 553syl 18 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
5711, 20, 49, 56mpbir3and 1238 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wex 1695  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874   cuni 4372   cint 4410  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  SubGrpcsubg 17411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414
This theorem is referenced by:  subrgint  18625
  Copyright terms: Public domain W3C validator