Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Visualization version   GIF version

Theorem stoweidlem16 38909
Description: Lemma for stoweid 38956. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1 𝑡𝜑
stoweidlem16.2 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem16.3 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
stoweidlem16.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem16.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem16 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑇,𝑓,,𝑡   𝜑,𝑓   ,𝐻
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑇(𝑔)   𝐻(𝑡,𝑓,𝑔)   𝑌(𝑡,𝑓,𝑔,)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
2 simp1 1054 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝜑)
3 fveq1 6102 . . . . . . . . . . 11 ( = 𝑓 → (𝑡) = (𝑓𝑡))
43breq2d 4595 . . . . . . . . . 10 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
53breq1d 4593 . . . . . . . . . 10 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
64, 5anbi12d 743 . . . . . . . . 9 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
76ralbidv 2969 . . . . . . . 8 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
8 stoweidlem16.2 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
97, 8elrab2 3333 . . . . . . 7 (𝑓𝑌 ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
109simplbi 475 . . . . . 6 (𝑓𝑌𝑓𝐴)
11103ad2ant2 1076 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑓𝐴)
12 fveq1 6102 . . . . . . . . . . 11 ( = 𝑔 → (𝑡) = (𝑔𝑡))
1312breq2d 4595 . . . . . . . . . 10 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
1412breq1d 4593 . . . . . . . . . 10 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
1513, 14anbi12d 743 . . . . . . . . 9 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1615ralbidv 2969 . . . . . . . 8 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1716, 8elrab2 3333 . . . . . . 7 (𝑔𝑌 ↔ (𝑔𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1817simplbi 475 . . . . . 6 (𝑔𝑌𝑔𝐴)
19183ad2ant3 1077 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔𝐴)
20 stoweidlem16.5 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
212, 11, 19, 20syl3anc 1318 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
221, 21syl5eqel 2692 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝐴)
23 stoweidlem16.1 . . . . 5 𝑡𝜑
24 nfra1 2925 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
25 nfcv 2751 . . . . . . . 8 𝑡𝐴
2624, 25nfrab 3100 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
278, 26nfcxfr 2749 . . . . . 6 𝑡𝑌
2827nfcri 2745 . . . . 5 𝑡 𝑓𝑌
2927nfcri 2745 . . . . 5 𝑡 𝑔𝑌
3023, 28, 29nf3an 1819 . . . 4 𝑡(𝜑𝑓𝑌𝑔𝑌)
312, 11jca 553 . . . . . . . . . . 11 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑓𝐴))
3231adantr 480 . . . . . . . . . 10 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝜑𝑓𝐴))
33 stoweidlem16.4 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
35 simpr 476 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑡𝑇)
3634, 35ffvelrnd 6268 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
372, 19jca 553 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑔𝐴))
38 eleq1 2676 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝐴𝑔𝐴))
3938anbi2d 736 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝜑𝑓𝐴) ↔ (𝜑𝑔𝐴)))
40 feq1 5939 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑇⟶ℝ ↔ 𝑔:𝑇⟶ℝ))
4139, 40imbi12d 333 . . . . . . . . . . 11 (𝑓 = 𝑔 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)))
4241, 33vtoclg 3239 . . . . . . . . . 10 (𝑔𝐴 → ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ))
4319, 37, 42sylc 63 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔:𝑇⟶ℝ)
4443fnvinran 38196 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
459simprbi 479 . . . . . . . . . . 11 (𝑓𝑌 → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
46453ad2ant2 1076 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4746r19.21bi 2916 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4847simpld 474 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑓𝑡))
4917simprbi 479 . . . . . . . . . . 11 (𝑔𝑌 → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
50493ad2ant3 1077 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5150r19.21bi 2916 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5251simpld 474 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑔𝑡))
5336, 44, 48, 52mulge0d 10483 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ ((𝑓𝑡) · (𝑔𝑡)))
5436, 44remulcld 9949 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ)
551fvmpt2 6200 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5635, 54, 55syl2anc 691 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5753, 56breqtrrd 4611 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝐻𝑡))
58 1red 9934 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 1 ∈ ℝ)
5947simprd 478 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ≤ 1)
6051simprd 478 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ≤ 1)
6136, 58, 44, 58, 48, 52, 59, 60lemul12ad 10845 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ (1 · 1))
62 1t1e1 11052 . . . . . . . 8 (1 · 1) = 1
6361, 62syl6breq 4624 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ 1)
6456, 63eqbrtrd 4605 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) ≤ 1)
6557, 64jca 553 . . . . 5 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
6665ex 449 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
6730, 66ralrimi 2940 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
68 nfmpt1 4675 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
691, 68nfcxfr 2749 . . . . . 6 𝑡𝐻
7069nfeq2 2766 . . . . 5 𝑡 = 𝐻
71 fveq1 6102 . . . . . . 7 ( = 𝐻 → (𝑡) = (𝐻𝑡))
7271breq2d 4595 . . . . . 6 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
7371breq1d 4593 . . . . . 6 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
7472, 73anbi12d 743 . . . . 5 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7570, 74ralbid 2966 . . . 4 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7675elrab 3331 . . 3 (𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝐻𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7722, 67, 76sylanbrc 695 . 2 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
7877, 8syl6eleqr 2699 1 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wral 2896  {crab 2900   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  stoweidlem48  38941  stoweidlem51  38944
  Copyright terms: Public domain W3C validator