Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Unicode version

Theorem stoweidlem16 29811
Description: Lemma for stoweid 29858. The subset  Y of functions in the algebra  A, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1  |-  F/ t
ph
stoweidlem16.2  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
stoweidlem16.3  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
stoweidlem16.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem16.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem16  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Distinct variable groups:    f, g, h, t, A    T, f, h, t    ph, f    h, H
Allowed substitution hints:    ph( t, g, h)    T( g)    H( t, f, g)    Y( t, f, g, h)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
2 simp1 988 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ph )
3 fveq1 5690 . . . . . . . . . . 11  |-  ( h  =  f  ->  (
h `  t )  =  ( f `  t ) )
43breq2d 4304 . . . . . . . . . 10  |-  ( h  =  f  ->  (
0  <_  ( h `  t )  <->  0  <_  ( f `  t ) ) )
53breq1d 4302 . . . . . . . . . 10  |-  ( h  =  f  ->  (
( h `  t
)  <_  1  <->  ( f `  t )  <_  1
) )
64, 5anbi12d 710 . . . . . . . . 9  |-  ( h  =  f  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
76ralbidv 2735 . . . . . . . 8  |-  ( h  =  f  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
8 stoweidlem16.2 . . . . . . . 8  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
97, 8elrab2 3119 . . . . . . 7  |-  ( f  e.  Y  <->  ( f  e.  A  /\  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) ) )
109simplbi 460 . . . . . 6  |-  ( f  e.  Y  ->  f  e.  A )
11103ad2ant2 1010 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  f  e.  A )
12 fveq1 5690 . . . . . . . . . . 11  |-  ( h  =  g  ->  (
h `  t )  =  ( g `  t ) )
1312breq2d 4304 . . . . . . . . . 10  |-  ( h  =  g  ->  (
0  <_  ( h `  t )  <->  0  <_  ( g `  t ) ) )
1412breq1d 4302 . . . . . . . . . 10  |-  ( h  =  g  ->  (
( h `  t
)  <_  1  <->  ( g `  t )  <_  1
) )
1513, 14anbi12d 710 . . . . . . . . 9  |-  ( h  =  g  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1615ralbidv 2735 . . . . . . . 8  |-  ( h  =  g  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1716, 8elrab2 3119 . . . . . . 7  |-  ( g  e.  Y  <->  ( g  e.  A  /\  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) ) )
1817simplbi 460 . . . . . 6  |-  ( g  e.  Y  ->  g  e.  A )
19183ad2ant3 1011 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g  e.  A )
20 stoweidlem16.5 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
212, 11, 19, 20syl3anc 1218 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
221, 21syl5eqel 2527 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  A )
23 stoweidlem16.1 . . . . 5  |-  F/ t
ph
24 nfra1 2766 . . . . . . . 8  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
25 nfcv 2579 . . . . . . . 8  |-  F/_ t A
2624, 25nfrab 2902 . . . . . . 7  |-  F/_ t { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
278, 26nfcxfr 2576 . . . . . 6  |-  F/_ t Y
2827nfcri 2573 . . . . 5  |-  F/ t  f  e.  Y
2927nfcri 2573 . . . . 5  |-  F/ t  g  e.  Y
3023, 28, 29nf3an 1863 . . . 4  |-  F/ t ( ph  /\  f  e.  Y  /\  g  e.  Y )
312, 11jca 532 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  f  e.  A ) )
3231adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( ph  /\  f  e.  A
) )
33 stoweidlem16.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
3432, 33syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  f : T --> RR )
35 simpr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  t  e.  T )
3634, 35ffvelrnd 5844 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  e.  RR )
372, 19jca 532 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  g  e.  A ) )
38 eleq1 2503 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f  e.  A  <->  g  e.  A ) )
3938anbi2d 703 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  g  e.  A ) ) )
40 feq1 5542 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f : T --> RR  <->  g : T
--> RR ) )
4139, 40imbi12d 320 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  g  e.  A )  ->  g : T --> RR ) ) )
4241, 33vtoclg 3030 . . . . . . . . . 10  |-  ( g  e.  A  ->  (
( ph  /\  g  e.  A )  ->  g : T --> RR ) )
4319, 37, 42sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g : T
--> RR )
4443fnvinran 29736 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
459simprbi 464 . . . . . . . . . . 11  |-  ( f  e.  Y  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
46453ad2ant2 1010 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4746r19.21bi 2814 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4847simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( f `  t
) )
4917simprbi 464 . . . . . . . . . . 11  |-  ( g  e.  Y  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
50493ad2ant3 1011 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5150r19.21bi 2814 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5251simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( g `  t
) )
5336, 44, 48, 52mulge0d 9916 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( ( f `  t )  x.  (
g `  t )
) )
5436, 44remulcld 9414 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  e.  RR )
551fvmpt2 5781 . . . . . . . 8  |-  ( ( t  e.  T  /\  ( ( f `  t )  x.  (
g `  t )
)  e.  RR )  ->  ( H `  t )  =  ( ( f `  t
)  x.  ( g `
 t ) ) )
5635, 54, 55syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  =  ( ( f `
 t )  x.  ( g `  t
) ) )
5753, 56breqtrrd 4318 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( H `  t
) )
58 1red 9401 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  1  e.  RR )
5947simprd 463 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  <_  1 )
6051simprd 463 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  <_  1 )
6136, 58, 44, 58, 48, 52, 59, 60lemul12ad 10275 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  ( 1  x.  1 ) )
62 1t1e1 10469 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
6361, 62syl6breq 4331 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  1 )
6456, 63eqbrtrd 4312 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  <_  1 )
6557, 64jca 532 . . . . 5  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
6665ex 434 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  ->  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
6730, 66ralrimi 2797 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
68 nfmpt1 4381 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
691, 68nfcxfr 2576 . . . . . 6  |-  F/_ t H
7069nfeq2 2590 . . . . 5  |-  F/ t  h  =  H
71 fveq1 5690 . . . . . . 7  |-  ( h  =  H  ->  (
h `  t )  =  ( H `  t ) )
7271breq2d 4304 . . . . . 6  |-  ( h  =  H  ->  (
0  <_  ( h `  t )  <->  0  <_  ( H `  t ) ) )
7371breq1d 4302 . . . . . 6  |-  ( h  =  H  ->  (
( h `  t
)  <_  1  <->  ( H `  t )  <_  1
) )
7472, 73anbi12d 710 . . . . 5  |-  ( h  =  H  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7570, 74ralbid 2733 . . . 4  |-  ( h  =  H  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7675elrab 3117 . . 3  |-  ( H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  <->  ( H  e.  A  /\  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
7722, 67, 76sylanbrc 664 . 2  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) } )
7877, 8syl6eleqr 2534 1  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   F/wnf 1589    e. wcel 1756   A.wral 2715   {crab 2719   class class class wbr 4292    e. cmpt 4350   -->wf 5414   ` cfv 5418  (class class class)co 6091   RRcr 9281   0cc0 9282   1c1 9283    x. cmul 9287    <_ cle 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598
This theorem is referenced by:  stoweidlem48  29843  stoweidlem51  29846
  Copyright terms: Public domain W3C validator