Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Visualization version   Unicode version

Theorem stoweidlem16 37876
Description: Lemma for stoweid 37925. The subset  Y of functions in the algebra  A, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1  |-  F/ t
ph
stoweidlem16.2  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
stoweidlem16.3  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
stoweidlem16.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem16.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem16  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Distinct variable groups:    f, g, h, t, A    T, f, h, t    ph, f    h, H
Allowed substitution hints:    ph( t, g, h)    T( g)    H( t, f, g)    Y( t, f, g, h)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
2 simp1 1008 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ph )
3 fveq1 5864 . . . . . . . . . . 11  |-  ( h  =  f  ->  (
h `  t )  =  ( f `  t ) )
43breq2d 4414 . . . . . . . . . 10  |-  ( h  =  f  ->  (
0  <_  ( h `  t )  <->  0  <_  ( f `  t ) ) )
53breq1d 4412 . . . . . . . . . 10  |-  ( h  =  f  ->  (
( h `  t
)  <_  1  <->  ( f `  t )  <_  1
) )
64, 5anbi12d 717 . . . . . . . . 9  |-  ( h  =  f  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
76ralbidv 2827 . . . . . . . 8  |-  ( h  =  f  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
8 stoweidlem16.2 . . . . . . . 8  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
97, 8elrab2 3198 . . . . . . 7  |-  ( f  e.  Y  <->  ( f  e.  A  /\  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) ) )
109simplbi 462 . . . . . 6  |-  ( f  e.  Y  ->  f  e.  A )
11103ad2ant2 1030 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  f  e.  A )
12 fveq1 5864 . . . . . . . . . . 11  |-  ( h  =  g  ->  (
h `  t )  =  ( g `  t ) )
1312breq2d 4414 . . . . . . . . . 10  |-  ( h  =  g  ->  (
0  <_  ( h `  t )  <->  0  <_  ( g `  t ) ) )
1412breq1d 4412 . . . . . . . . . 10  |-  ( h  =  g  ->  (
( h `  t
)  <_  1  <->  ( g `  t )  <_  1
) )
1513, 14anbi12d 717 . . . . . . . . 9  |-  ( h  =  g  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1615ralbidv 2827 . . . . . . . 8  |-  ( h  =  g  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1716, 8elrab2 3198 . . . . . . 7  |-  ( g  e.  Y  <->  ( g  e.  A  /\  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) ) )
1817simplbi 462 . . . . . 6  |-  ( g  e.  Y  ->  g  e.  A )
19183ad2ant3 1031 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g  e.  A )
20 stoweidlem16.5 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
212, 11, 19, 20syl3anc 1268 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
221, 21syl5eqel 2533 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  A )
23 stoweidlem16.1 . . . . 5  |-  F/ t
ph
24 nfra1 2769 . . . . . . . 8  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
25 nfcv 2592 . . . . . . . 8  |-  F/_ t A
2624, 25nfrab 2972 . . . . . . 7  |-  F/_ t { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
278, 26nfcxfr 2590 . . . . . 6  |-  F/_ t Y
2827nfcri 2586 . . . . 5  |-  F/ t  f  e.  Y
2927nfcri 2586 . . . . 5  |-  F/ t  g  e.  Y
3023, 28, 29nf3an 2013 . . . 4  |-  F/ t ( ph  /\  f  e.  Y  /\  g  e.  Y )
312, 11jca 535 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  f  e.  A ) )
3231adantr 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( ph  /\  f  e.  A
) )
33 stoweidlem16.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
3432, 33syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  f : T --> RR )
35 simpr 463 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  t  e.  T )
3634, 35ffvelrnd 6023 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  e.  RR )
372, 19jca 535 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  g  e.  A ) )
38 eleq1 2517 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f  e.  A  <->  g  e.  A ) )
3938anbi2d 710 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  g  e.  A ) ) )
40 feq1 5710 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f : T --> RR  <->  g : T
--> RR ) )
4139, 40imbi12d 322 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  g  e.  A )  ->  g : T --> RR ) ) )
4241, 33vtoclg 3107 . . . . . . . . . 10  |-  ( g  e.  A  ->  (
( ph  /\  g  e.  A )  ->  g : T --> RR ) )
4319, 37, 42sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g : T
--> RR )
4443fnvinran 37335 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
459simprbi 466 . . . . . . . . . . 11  |-  ( f  e.  Y  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
46453ad2ant2 1030 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4746r19.21bi 2757 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4847simpld 461 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( f `  t
) )
4917simprbi 466 . . . . . . . . . . 11  |-  ( g  e.  Y  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
50493ad2ant3 1031 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5150r19.21bi 2757 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5251simpld 461 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( g `  t
) )
5336, 44, 48, 52mulge0d 10190 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( ( f `  t )  x.  (
g `  t )
) )
5436, 44remulcld 9671 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  e.  RR )
551fvmpt2 5957 . . . . . . . 8  |-  ( ( t  e.  T  /\  ( ( f `  t )  x.  (
g `  t )
)  e.  RR )  ->  ( H `  t )  =  ( ( f `  t
)  x.  ( g `
 t ) ) )
5635, 54, 55syl2anc 667 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  =  ( ( f `
 t )  x.  ( g `  t
) ) )
5753, 56breqtrrd 4429 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( H `  t
) )
58 1red 9658 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  1  e.  RR )
5947simprd 465 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  <_  1 )
6051simprd 465 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  <_  1 )
6136, 58, 44, 58, 48, 52, 59, 60lemul12ad 10549 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  ( 1  x.  1 ) )
62 1t1e1 10757 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
6361, 62syl6breq 4442 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  1 )
6456, 63eqbrtrd 4423 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  <_  1 )
6557, 64jca 535 . . . . 5  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
6665ex 436 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  ->  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
6730, 66ralrimi 2788 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
68 nfmpt1 4492 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
691, 68nfcxfr 2590 . . . . . 6  |-  F/_ t H
7069nfeq2 2607 . . . . 5  |-  F/ t  h  =  H
71 fveq1 5864 . . . . . . 7  |-  ( h  =  H  ->  (
h `  t )  =  ( H `  t ) )
7271breq2d 4414 . . . . . 6  |-  ( h  =  H  ->  (
0  <_  ( h `  t )  <->  0  <_  ( H `  t ) ) )
7371breq1d 4412 . . . . . 6  |-  ( h  =  H  ->  (
( h `  t
)  <_  1  <->  ( H `  t )  <_  1
) )
7472, 73anbi12d 717 . . . . 5  |-  ( h  =  H  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7570, 74ralbid 2822 . . . 4  |-  ( h  =  H  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7675elrab 3196 . . 3  |-  ( H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  <->  ( H  e.  A  /\  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
7722, 67, 76sylanbrc 670 . 2  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) } )
7877, 8syl6eleqr 2540 1  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444   F/wnf 1667    e. wcel 1887   A.wral 2737   {crab 2741   class class class wbr 4402    |-> cmpt 4461   -->wf 5578   ` cfv 5582  (class class class)co 6290   RRcr 9538   0cc0 9539   1c1 9540    x. cmul 9544    <_ cle 9676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863
This theorem is referenced by:  stoweidlem48  37909  stoweidlem51  37912
  Copyright terms: Public domain W3C validator