Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Structured version   Visualization version   GIF version

Theorem stoweidlem15 38908
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p(t_0) = 0, and p > 0 on T - U. Here (𝐺𝐼) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem15.3 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem15.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem15 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑓,𝐼   𝑇,𝑓   𝜑,𝑓   𝑡,,𝐺   𝐴,   ,𝐼,𝑡   𝑇,,𝑡   ,𝑍
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑡,𝑓,)   𝑆(𝑡,𝑓,)   𝑀(𝑡,𝑓,)   𝑍(𝑡,𝑓)

Proof of Theorem stoweidlem15
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → 𝜑)
2 stoweidlem15.3 . . . . . 6 (𝜑𝐺:(1...𝑀)⟶𝑄)
32fnvinran 38196 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝑄)
4 elrabi 3328 . . . . . 6 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} → (𝐺𝐼) ∈ 𝐴)
5 stoweidlem15.1 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
64, 5eleq2s 2706 . . . . 5 ((𝐺𝐼) ∈ 𝑄 → (𝐺𝐼) ∈ 𝐴)
73, 6syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝐴)
8 eleq1 2676 . . . . . . . 8 (𝑓 = (𝐺𝐼) → (𝑓𝐴 ↔ (𝐺𝐼) ∈ 𝐴))
98anbi2d 736 . . . . . . 7 (𝑓 = (𝐺𝐼) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝐼) ∈ 𝐴)))
10 feq1 5939 . . . . . . 7 (𝑓 = (𝐺𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝐼):𝑇⟶ℝ))
119, 10imbi12d 333 . . . . . 6 (𝑓 = (𝐺𝐼) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ)))
12 stoweidlem15.4 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1311, 12vtoclg 3239 . . . . 5 ((𝐺𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
147, 13syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
151, 7, 14mp2and 711 . . 3 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼):𝑇⟶ℝ)
1615fnvinran 38196 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ∈ ℝ)
173, 5syl6eleq 2698 . . . . . . 7 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
18 fveq1 6102 . . . . . . . . . 10 ( = (𝐺𝐼) → (𝑍) = ((𝐺𝐼)‘𝑍))
1918eqeq1d 2612 . . . . . . . . 9 ( = (𝐺𝐼) → ((𝑍) = 0 ↔ ((𝐺𝐼)‘𝑍) = 0))
20 fveq1 6102 . . . . . . . . . . . 12 ( = (𝐺𝐼) → (𝑡) = ((𝐺𝐼)‘𝑡))
2120breq2d 4595 . . . . . . . . . . 11 ( = (𝐺𝐼) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
2220breq1d 4593 . . . . . . . . . . 11 ( = (𝐺𝐼) → ((𝑡) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
2321, 22anbi12d 743 . . . . . . . . . 10 ( = (𝐺𝐼) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2423ralbidv 2969 . . . . . . . . 9 ( = (𝐺𝐼) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2519, 24anbi12d 743 . . . . . . . 8 ( = (𝐺𝐼) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2625elrab 3331 . . . . . . 7 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2717, 26sylib 207 . . . . . 6 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2827simprd 478 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2928simprd 478 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
30 fveq2 6103 . . . . . . . 8 (𝑠 = 𝑡 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑡))
3130breq2d 4595 . . . . . . 7 (𝑠 = 𝑡 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
3230breq1d 4593 . . . . . . 7 (𝑠 = 𝑡 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
3331, 32anbi12d 743 . . . . . 6 (𝑠 = 𝑡 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
3433cbvralv 3147 . . . . 5 (∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
35 fveq2 6103 . . . . . . . 8 (𝑠 = 𝑆 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑆))
3635breq2d 4595 . . . . . . 7 (𝑠 = 𝑆 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑆)))
3735breq1d 4593 . . . . . . 7 (𝑠 = 𝑆 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑆) ≤ 1))
3836, 37anbi12d 743 . . . . . 6 (𝑠 = 𝑆 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1)))
3938rspccva 3281 . . . . 5 ((∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4034, 39sylanbr 489 . . . 4 ((∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4129, 40sylan 487 . . 3 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4241simpld 474 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝐼)‘𝑆))
4341simprd 478 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ≤ 1)
4416, 42, 433jca 1235 1 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816  cle 9954  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by:  stoweidlem30  38923  stoweidlem38  38931  stoweidlem44  38937
  Copyright terms: Public domain W3C validator