Step | Hyp | Ref
| Expression |
1 | | simpl 472 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → 𝜑) |
2 | | stoweidlem15.3 |
. . . . . 6
⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
3 | 2 | fnvinran 38196 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ 𝑄) |
4 | | elrabi 3328 |
. . . . . 6
⊢ ((𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} → (𝐺‘𝐼) ∈ 𝐴) |
5 | | stoweidlem15.1 |
. . . . . 6
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
6 | 4, 5 | eleq2s 2706 |
. . . . 5
⊢ ((𝐺‘𝐼) ∈ 𝑄 → (𝐺‘𝐼) ∈ 𝐴) |
7 | 3, 6 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ 𝐴) |
8 | | eleq1 2676 |
. . . . . . . 8
⊢ (𝑓 = (𝐺‘𝐼) → (𝑓 ∈ 𝐴 ↔ (𝐺‘𝐼) ∈ 𝐴)) |
9 | 8 | anbi2d 736 |
. . . . . . 7
⊢ (𝑓 = (𝐺‘𝐼) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴))) |
10 | | feq1 5939 |
. . . . . . 7
⊢ (𝑓 = (𝐺‘𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘𝐼):𝑇⟶ℝ)) |
11 | 9, 10 | imbi12d 333 |
. . . . . 6
⊢ (𝑓 = (𝐺‘𝐼) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ))) |
12 | | stoweidlem15.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
13 | 11, 12 | vtoclg 3239 |
. . . . 5
⊢ ((𝐺‘𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ)) |
14 | 7, 13 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ)) |
15 | 1, 7, 14 | mp2and 711 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼):𝑇⟶ℝ) |
16 | 15 | fnvinran 38196 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → ((𝐺‘𝐼)‘𝑆) ∈ ℝ) |
17 | 3, 5 | syl6eleq 2698 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))}) |
18 | | fveq1 6102 |
. . . . . . . . . 10
⊢ (ℎ = (𝐺‘𝐼) → (ℎ‘𝑍) = ((𝐺‘𝐼)‘𝑍)) |
19 | 18 | eqeq1d 2612 |
. . . . . . . . 9
⊢ (ℎ = (𝐺‘𝐼) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝐼)‘𝑍) = 0)) |
20 | | fveq1 6102 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐺‘𝐼) → (ℎ‘𝑡) = ((𝐺‘𝐼)‘𝑡)) |
21 | 20 | breq2d 4595 |
. . . . . . . . . . 11
⊢ (ℎ = (𝐺‘𝐼) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑡))) |
22 | 20 | breq1d 4593 |
. . . . . . . . . . 11
⊢ (ℎ = (𝐺‘𝐼) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
23 | 21, 22 | anbi12d 743 |
. . . . . . . . . 10
⊢ (ℎ = (𝐺‘𝐼) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
24 | 23 | ralbidv 2969 |
. . . . . . . . 9
⊢ (ℎ = (𝐺‘𝐼) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
25 | 19, 24 | anbi12d 743 |
. . . . . . . 8
⊢ (ℎ = (𝐺‘𝐼) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
26 | 25 | elrab 3331 |
. . . . . . 7
⊢ ((𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
27 | 17, 26 | sylib 207 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ((𝐺‘𝐼) ∈ 𝐴 ∧ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
28 | 27 | simprd 478 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
29 | 28 | simprd 478 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
30 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐺‘𝐼)‘𝑠) = ((𝐺‘𝐼)‘𝑡)) |
31 | 30 | breq2d 4595 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (0 ≤ ((𝐺‘𝐼)‘𝑠) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑡))) |
32 | 30 | breq1d 4593 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (((𝐺‘𝐼)‘𝑠) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
33 | 31, 32 | anbi12d 743 |
. . . . . 6
⊢ (𝑠 = 𝑡 → ((0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
34 | 33 | cbvralv 3147 |
. . . . 5
⊢
(∀𝑠 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
35 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝐺‘𝐼)‘𝑠) = ((𝐺‘𝐼)‘𝑆)) |
36 | 35 | breq2d 4595 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (0 ≤ ((𝐺‘𝐼)‘𝑠) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑆))) |
37 | 35 | breq1d 4593 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (((𝐺‘𝐼)‘𝑠) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
38 | 36, 37 | anbi12d 743 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1))) |
39 | 38 | rspccva 3281 |
. . . . 5
⊢
((∀𝑠 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
40 | 34, 39 | sylanbr 489 |
. . . 4
⊢
((∀𝑡 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
41 | 29, 40 | sylan 487 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
42 | 41 | simpld 474 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → 0 ≤ ((𝐺‘𝐼)‘𝑆)) |
43 | 41 | simprd 478 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → ((𝐺‘𝐼)‘𝑆) ≤ 1) |
44 | 16, 42, 43 | 3jca 1235 |
1
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (((𝐺‘𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |