Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   GIF version

Theorem stoweidlem38 38931
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem38.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem38.3 (𝜑𝑀 ∈ ℕ)
stoweidlem38.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem38.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem38 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21nnrecred 10943 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
32adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 / 𝑀) ∈ ℝ)
4 fzfid 12634 . . . . 5 ((𝜑𝑆𝑇) → (1...𝑀) ∈ Fin)
5 stoweidlem38.1 . . . . . . . 8 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
6 stoweidlem38.4 . . . . . . . 8 (𝜑𝐺:(1...𝑀)⟶𝑄)
7 stoweidlem38.5 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
85, 6, 7stoweidlem15 38908 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑆) ∧ ((𝐺𝑖)‘𝑆) ≤ 1))
98simp1d 1066 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
109an32s 842 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
114, 10fsumrecl 14312 . . . 4 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ)
12 1red 9934 . . . . . 6 (𝜑 → 1 ∈ ℝ)
13 0le1 10430 . . . . . . 7 0 ≤ 1
1413a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
151nnred 10912 . . . . . 6 (𝜑𝑀 ∈ ℝ)
161nngt0d 10941 . . . . . 6 (𝜑 → 0 < 𝑀)
17 divge0 10771 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (1 / 𝑀))
1812, 14, 15, 16, 17syl22anc 1319 . . . . 5 (𝜑 → 0 ≤ (1 / 𝑀))
1918adantr 480 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ (1 / 𝑀))
208simp2d 1067 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝑖)‘𝑆))
2120an32s 842 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐺𝑖)‘𝑆))
224, 10, 21fsumge0 14368 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
233, 11, 19, 22mulge0d 10483 . . 3 ((𝜑𝑆𝑇) → 0 ≤ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
24 stoweidlem38.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
255, 24, 1, 6, 7stoweidlem30 38923 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
2623, 25breqtrrd 4611 . 2 ((𝜑𝑆𝑇) → 0 ≤ (𝑃𝑆))
27 1red 9934 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 1 ∈ ℝ)
288simp3d 1068 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ≤ 1)
2928an32s 842 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ≤ 1)
304, 10, 27, 29fsumle 14372 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ Σ𝑖 ∈ (1...𝑀)1)
31 fzfid 12634 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
32 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
33 fsumconst 14364 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
3431, 32, 33sylancl 693 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
351nnnn0d 11228 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
36 hashfz1 12996 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (#‘(1...𝑀)) = 𝑀)
3837oveq1d 6564 . . . . . . . 8 (𝜑 → ((#‘(1...𝑀)) · 1) = (𝑀 · 1))
391nncnd 10913 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4039mulid1d 9936 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
4134, 38, 403eqtrd 2648 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4241adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4330, 42breqtrd 4609 . . . . 5 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀)
4415adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → 𝑀 ∈ ℝ)
45 1red 9934 . . . . . . 7 ((𝜑𝑆𝑇) → 1 ∈ ℝ)
46 0lt1 10429 . . . . . . . 8 0 < 1
4746a1i 11 . . . . . . 7 ((𝜑𝑆𝑇) → 0 < 1)
4815, 16jca 553 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
4948adantr 480 . . . . . . 7 ((𝜑𝑆𝑇) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
50 divgt0 10770 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 < (1 / 𝑀))
5145, 47, 49, 50syl21anc 1317 . . . . . 6 ((𝜑𝑆𝑇) → 0 < (1 / 𝑀))
52 lemul2 10755 . . . . . 6 ((Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((1 / 𝑀) ∈ ℝ ∧ 0 < (1 / 𝑀))) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5311, 44, 3, 51, 52syl112anc 1322 . . . . 5 ((𝜑𝑆𝑇) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5443, 53mpbid 221 . . . 4 ((𝜑𝑆𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀))
5525, 54eqbrtrd 4605 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ ((1 / 𝑀) · 𝑀))
5632a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
571nnne0d 10942 . . . . . 6 (𝜑𝑀 ≠ 0)
5856, 39, 573jca 1235 . . . . 5 (𝜑 → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
5958adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
60 divcan1 10573 . . . 4 ((1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((1 / 𝑀) · 𝑀) = 1)
6159, 60syl 17 . . 3 ((𝜑𝑆𝑇) → ((1 / 𝑀) · 𝑀) = 1)
6255, 61breqtrd 4609 . 2 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ 1)
6326, 62jca 553 1 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  cn 10897  0cn0 11169  ...cfz 12197  #chash 12979  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  stoweidlem44  38937
  Copyright terms: Public domain W3C validator